메뉴 건너뛰기




Volumn 5, Issue 2, 2010, Pages 147-152

Comparison of modelling techniques to predict macroinvertebrate community composition in rivers of Ethiopia

Author keywords

Classification tree; Genetic algorithm; Greedy stepwise; Model optimisation; Support vector machines

Indexed keywords

AQUATIC ECOSYSTEM; COMMUNITY COMPOSITION; ENVIRONMENTAL RESTORATION; GENETIC ALGORITHM; MACROINVERTEBRATE; OPTIMIZATION; RIVER BASIN; RIVER WATER; SUSTAINABILITY;

EID: 77549086606     PISSN: 15749541     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecoinf.2009.12.004     Document Type: Article
Times cited : (58)

References (39)
  • 1
    • 84895394239 scopus 로고    scopus 로고
    • Predicting macro-fauna community types from environmental variables by means of support vector machines
    • Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.S. (Eds), Springer, Berlin
    • Akkermans W., Verdonschot P., Nijboer R., Goedhart P., and ter Braak C. Predicting macro-fauna community types from environmental variables by means of support vector machines. In: Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.S. (Eds). Modelling Community Structure in Freshwater Ecosystems (2005), Springer, Berlin 411-434
    • (2005) Modelling Community Structure in Freshwater Ecosystems , pp. 411-434
    • Akkermans, W.1    Verdonschot, P.2    Nijboer, R.3    Goedhart, P.4    ter Braak, C.5
  • 6
    • 84956852805 scopus 로고    scopus 로고
    • Simultaneous prediction of multiple chemical parameters of river water quality with TILDE
    • Blockeel H., Dzeroski S., and Grbovic J. Simultaneous prediction of multiple chemical parameters of river water quality with TILDE. Lecture Notes in Artificial Intelligence 1704 (1999) 32-40
    • (1999) Lecture Notes in Artificial Intelligence , vol.1704 , pp. 32-40
    • Blockeel, H.1    Dzeroski, S.2    Grbovic, J.3
  • 7
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 97 (1997) 245-271
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 9
    • 0002615660 scopus 로고    scopus 로고
    • Geometry and invariance in kernel based methods
    • Scholkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge
    • Burges C.J.C. Geometry and invariance in kernel based methods. In: Scholkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods - Support Vector Learning (1998), MIT Press, Cambridge
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Burges, C.J.C.1
  • 12
    • 29444439168 scopus 로고    scopus 로고
    • Application of artificial neural network models to analyse the relationships between Gammarus pulex L. (Crustacea, Amphipoda) and river characteristics
    • Dedecker A.P., Goethals P.L.M., D'heygere T., Gevrey M., Lek S., and De Pauw N. Application of artificial neural network models to analyse the relationships between Gammarus pulex L. (Crustacea, Amphipoda) and river characteristics. Environmental Modelling and Assessment 111 (2005) 223-241
    • (2005) Environmental Modelling and Assessment , vol.111 , pp. 223-241
    • Dedecker, A.P.1    Goethals, P.L.M.2    D'heygere, T.3    Gevrey, M.4    Lek, S.5    De Pauw, N.6
  • 13
    • 0037442548 scopus 로고    scopus 로고
    • Genetic algorithms for optimisation of predicitive ecosystem models based on decision trees and neural networks
    • D'heygere T., Goethals P.L.M., and De Pauw N. Genetic algorithms for optimisation of predicitive ecosystem models based on decision trees and neural networks. Ecological Modelling 160 (2003) 291-300
    • (2003) Ecological Modelling , vol.160 , pp. 291-300
    • D'heygere, T.1    Goethals, P.L.M.2    De Pauw, N.3
  • 14
    • 33646143005 scopus 로고    scopus 로고
    • Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks
    • D'heygere T., Goethals P.L.M., and De Pauw N. Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks. Ecological Modelling 195 (2006) 20-29
    • (2006) Ecological Modelling , vol.195 , pp. 20-29
    • D'heygere, T.1    Goethals, P.L.M.2    De Pauw, N.3
  • 17
    • 25744454938 scopus 로고    scopus 로고
    • Machine learning applications in biological classification of river water quality
    • Michalski R.S., Bratko I., and Kubat M. (Eds), John Wiley and Sons Ltd., New York
    • Dzeroski S., Grbovic J., and Walley W.J. Machine learning applications in biological classification of river water quality. In: Michalski R.S., Bratko I., and Kubat M. (Eds). Machine Learning and Data Mining: Methods and Applications (1997), John Wiley and Sons Ltd., New York 429-448
    • (1997) Machine Learning and Data Mining: Methods and Applications , pp. 429-448
    • Dzeroski, S.1    Grbovic, J.2    Walley, W.J.3
  • 18
    • 0343391218 scopus 로고    scopus 로고
    • Predicting chemical parameters of river water quality from bioindicator data
    • Dzeroski S., Demsar D., and Grbovic J. Predicting chemical parameters of river water quality from bioindicator data. Applied Intelligence 13 (2000) 7-17
    • (2000) Applied Intelligence , vol.13 , pp. 7-17
    • Dzeroski, S.1    Demsar, D.2    Grbovic, J.3
  • 19
    • 33750012330 scopus 로고    scopus 로고
    • Effects of sample survey design on the accuracy of classification tree models in species distribution models
    • Edwards T.C., Cutler D.R., Zimmermann N.E., Geiser L., and Moisen G.G. Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecological Modelling 199 (2006) 132-141
    • (2006) Ecological Modelling , vol.199 , pp. 132-141
    • Edwards, T.C.1    Cutler, D.R.2    Zimmermann, N.E.3    Geiser, L.4    Moisen, G.G.5
  • 20
    • 36148955760 scopus 로고    scopus 로고
    • Analysis of macrobenthic communities in Flanders, Belgium, using a stepwise input variable selection procedure with artificial neural networds
    • Gabriels W., Goethals P.L.M., Dedecker A.P., Lek S., and De Pauw N. Analysis of macrobenthic communities in Flanders, Belgium, using a stepwise input variable selection procedure with artificial neural networds. Aquatic Ecology 41 (2007) 427-441
    • (2007) Aquatic Ecology , vol.41 , pp. 427-441
    • Gabriels, W.1    Goethals, P.L.M.2    Dedecker, A.P.3    Lek, S.4    De Pauw, N.5
  • 22
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M., Dimopoulos L., and Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling 160 (2003) 249-264
    • (2003) Ecological Modelling , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, L.2    Lek, S.3
  • 23
    • 0002315593 scopus 로고
    • A European perspective on biological monitoring
    • Loeb S., and Spacie A. (Eds), Lewis Publishers, Boca Raton
    • Ghetti F.P., and Ravera O. A European perspective on biological monitoring. In: Loeb S., and Spacie A. (Eds). Biological Monitoring of Aquatic Systems (1993), Lewis Publishers, Boca Raton
    • (1993) Biological Monitoring of Aquatic Systems
    • Ghetti, F.P.1    Ravera, O.2
  • 25
    • 36148938321 scopus 로고    scopus 로고
    • Applications of artificial neural networks predicting macroinvertebrates in freshwaters
    • Goethals P.L.M., Dedecker A.P., Gabriels W., Lek S., and De Pauw N. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology 41 (2007) 491-508
    • (2007) Aquatic Ecology , vol.41 , pp. 491-508
    • Goethals, P.L.M.1    Dedecker, A.P.2    Gabriels, W.3    Lek, S.4    De Pauw, N.5
  • 27
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Hall M.A., and Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering 15 (2003) 1437-1447
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 30
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Lavrac M., and Wrobel S. (Eds)
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Lavrac M., and Wrobel S. (Eds). Proceedings of the International Joint Conference on Artificial Intelligence (1995) 1137-1143
    • (1995) Proceedings of the International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 31
  • 32
    • 34247394619 scopus 로고    scopus 로고
    • Multinational, freshwater biomonitoring programs in the developing world: lessons learned from African and Southeast Asian river surveys
    • Resh V.H. Multinational, freshwater biomonitoring programs in the developing world: lessons learned from African and Southeast Asian river surveys. Environmental Management 39 (2007) 737-748
    • (2007) Environmental Management , vol.39 , pp. 737-748
    • Resh, V.H.1
  • 37
    • 33751546213 scopus 로고    scopus 로고
    • Artificial neural nets and abundance prediction of aquatic insects in small streams
    • Wagner R., Obach M., Werner H., and Schmidt H.H. Artificial neural nets and abundance prediction of aquatic insects in small streams. Ecological informatics 1 (2006) 423-430
    • (2006) Ecological informatics , vol.1 , pp. 423-430
    • Wagner, R.1    Obach, M.2    Werner, H.3    Schmidt, H.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.