메뉴 건너뛰기




Volumn 23, Issue 3, 2010, Pages 202-219

A fuzzy ensemble of parallel polynomial neural networks with information granules formed by fuzzy clustering

Author keywords

Fuzzy C means; Fuzzy ensemble; Information granules; Polynomial neural networks

Indexed keywords

ACTIVATION LEVEL; APPROXIMATION ABILITY; DESIGN PROCEDURE; FUZZY C MEAN; FUZZY C MEANS CLUSTERING; FUZZY MODELS; GENERALIZATION CAPABILITY; HIGH DIMENSIONALITY; HIGHLY NONLINEAR; INFORMATION GRANULES; INPUT SPACE; INPUT VARIABLES; LOCAL LEARNING; LOCAL MODEL; LOCAL REGION; NEURO-FUZZY MODELING; OPTIMAL VALUES; OUTPUT VARIABLES; PARALLEL POLYNOMIALS; POLYNOMIAL NEURAL NETWORKS; WEIGHTED LEAST SQUARE ESTIMATION;

EID: 77549083109     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2009.12.002     Document Type: Article
Times cited : (27)

References (36)
  • 1
    • 84972812688 scopus 로고
    • Synthesis of fuzzy models for industrial processes
    • Tong R.M. Synthesis of fuzzy models for industrial processes. Int. J. Gen. Syst. 4 (1978) 143-162
    • (1978) Int. J. Gen. Syst. , vol.4 , pp. 143-162
    • Tong, R.M.1
  • 2
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15 (1985) 116-132
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 3
    • 27744519316 scopus 로고    scopus 로고
    • Fuzzy polynomial neuron-based self-organizing neural networks
    • Oh S.-K., and Pedrycz W. Fuzzy polynomial neuron-based self-organizing neural networks. Int. J. Gen. Syst. 32 3 (2003) 237-250
    • (2003) Int. J. Gen. Syst. , vol.32 , Issue.3 , pp. 237-250
    • Oh, S.-K.1    Pedrycz, W.2
  • 4
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • Yen J., Wang L., and Gillespie C.W. Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans. Fuzzy Syst. 6 4 (1998)
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.4
    • Yen, J.1    Wang, L.2    Gillespie, C.W.3
  • 5
    • 0030105463 scopus 로고    scopus 로고
    • A polynomial network modeling approach to a class of large-scale hydraulic systems
    • Kleinsteuber S., and Sepehri N. A polynomial network modeling approach to a class of large-scale hydraulic systems. Comput. Elect. Eng. 22 (1996) 151-168
    • (1996) Comput. Elect. Eng. , vol.22 , pp. 151-168
    • Kleinsteuber, S.1    Sepehri, N.2
  • 7
    • 0036529715 scopus 로고    scopus 로고
    • The design of self-organizing polynomial neural networks
    • Oh S.-K., and Pedrycz W. The design of self-organizing polynomial neural networks. Inform. Sci. 141 (2002) 237-258
    • (2002) Inform. Sci. , vol.141 , pp. 237-258
    • Oh, S.-K.1    Pedrycz, W.2
  • 8
    • 0038722717 scopus 로고    scopus 로고
    • Polynomial neural networks architecture: analysis and design
    • Oh S.-K., Pedrycz W., and Park B.-J. Polynomial neural networks architecture: analysis and design. Comput. Electr. Eng. 29 6 (2003) 703-725
    • (2003) Comput. Electr. Eng. , vol.29 , Issue.6 , pp. 703-725
    • Oh, S.-K.1    Pedrycz, W.2    Park, B.-J.3
  • 10
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • Zadeh L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90 (1997) 111-117
    • (1997) Fuzzy Sets Syst. , vol.90 , pp. 111-117
    • Zadeh, L.A.1
  • 11
    • 0030144670 scopus 로고    scopus 로고
    • Fuzzy multimodels
    • Pedrycz W. Fuzzy multimodels. IEEE Trans. Fuzzy Syst. 4 2 (1996) 139-148
    • (1996) IEEE Trans. Fuzzy Syst. , vol.4 , Issue.2 , pp. 139-148
    • Pedrycz, W.1
  • 12
    • 33749510330 scopus 로고    scopus 로고
    • Linguistic models as a framework of user-centric system modeling
    • Pedrycz W., and Kwak K.C. Linguistic models as a framework of user-centric system modeling. IEEE Trans. Syst. Man Cybern. A 36 4 (2006) 727-745
    • (2006) IEEE Trans. Syst. Man Cybern. A , vol.36 , Issue.4 , pp. 727-745
    • Pedrycz, W.1    Kwak, K.C.2
  • 13
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems
    • Oh S.K., and Pedrycz W. Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems. Fuzzy Sets Syst. 115 (2000) 205-230
    • (2000) Fuzzy Sets Syst. , vol.115 , pp. 205-230
    • Oh, S.K.1    Pedrycz, W.2
  • 14
    • 0032164985 scopus 로고    scopus 로고
    • A simple identified Sugeno-type fuzzy model via double clustering
    • Kim E.T., et al. A simple identified Sugeno-type fuzzy model via double clustering. Inform. Sci. 110 (1998) 25-39
    • (1998) Inform. Sci. , vol.110 , pp. 25-39
    • Kim, E.T.1
  • 16
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems
    • Oh S.-K., and Pedrycz W. Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems. Fuzzy Sets Syst. 115 2 (2000) 205-230
    • (2000) Fuzzy Sets Syst. , vol.115 , Issue.2 , pp. 205-230
    • Oh, S.-K.1    Pedrycz, W.2
  • 17
    • 9344244023 scopus 로고    scopus 로고
    • Self-organizing neural networks with fuzzy polynomial neurons
    • Oh S.-K., Pedrycz W., and Ahn T.-C. Self-organizing neural networks with fuzzy polynomial neurons. Appl. Soft Comput. 2 1F (2002) 1-10
    • (2002) Appl. Soft Comput. , vol.2 , Issue.1 F , pp. 1-10
    • Oh, S.-K.1    Pedrycz, W.2    Ahn, T.-C.3
  • 18
    • 0036801320 scopus 로고    scopus 로고
    • Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling
    • Park B.-J., Pedrycz W., and Oh S.-K. Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling. IEEE Trans. Fuzzy Syst. 10 5 (2002) 607-621
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.5 , pp. 607-621
    • Park, B.-J.1    Pedrycz, W.2    Oh, S.-K.3
  • 19
    • 0043092359 scopus 로고    scopus 로고
    • Hybrid identification in fuzzy-neural networks
    • Oh S.-K., Pedrycz W., and Park H.-S. Hybrid identification in fuzzy-neural networks. Fuzzy Sets Syst. 138 2 (2003) 399-426
    • (2003) Fuzzy Sets Syst. , vol.138 , Issue.2 , pp. 399-426
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 20
    • 0344493899 scopus 로고    scopus 로고
    • Rule-based multi-FNN identification with the aid of evolutionary fuzzy granulation
    • Oh S.-K., Pedrycz W., and Park H.-S. Rule-based multi-FNN identification with the aid of evolutionary fuzzy granulation. J. Knowledge-Based Syst. 17 1 (2004) 1-13
    • (2004) J. Knowledge-Based Syst. , vol.17 , Issue.1 , pp. 1-13
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 23
    • 33847421698 scopus 로고    scopus 로고
    • A novel continuous forward algorithm for RBF neural modelling
    • Peng J.X., Li K., and Irwin G.W. A novel continuous forward algorithm for RBF neural modelling. IEEE Trans. Automat. Control 52 1 (2007) 117-122
    • (2007) IEEE Trans. Automat. Control , vol.52 , Issue.1 , pp. 117-122
    • Peng, J.X.1    Li, K.2    Irwin, G.W.3
  • 25
    • 33646500527 scopus 로고    scopus 로고
    • A novel radial basis function neural network for discriminant analysis
    • Yang Z.R. A novel radial basis function neural network for discriminant analysis. IEEE Trans. Neural Networks 17 3 (2006) 604-612
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.3 , pp. 604-612
    • Yang, Z.R.1
  • 26
    • 37249029174 scopus 로고    scopus 로고
    • A hybrid forward algorithm for RBF neural network construction
    • Peng J.X., Li K., and Huang D.S. A hybrid forward algorithm for RBF neural network construction. IEEE Trans. Neural Networks 17 6 (2006) 1439-1451
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.6 , pp. 1439-1451
    • Peng, J.X.1    Li, K.2    Huang, D.S.3
  • 27
    • 34347245533 scopus 로고    scopus 로고
    • Localized generalization error model and its application to architecture selection for radial basis function neural network
    • Yeung D.S., Ng W.Y., Wang D., Tsang E.C.C., and Wang X.Z. Localized generalization error model and its application to architecture selection for radial basis function neural network. IEEE Trans. Neural Networks 18 5 (2007) 1294-1305
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.5 , pp. 1294-1305
    • Yeung, D.S.1    Ng, W.Y.2    Wang, D.3    Tsang, E.C.C.4    Wang, X.Z.5
  • 28
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls G., and Bruzzone L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 43 6 (2005) 1351-1362
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 29
    • 19344375792 scopus 로고    scopus 로고
    • High-speed face recognition based on discrete cosine transform and RBF neural networks
    • Er M.J., Chen W., and Wu S. High-speed face recognition based on discrete cosine transform and RBF neural networks. IEEE Trans. Neural Networks 16 3 (2005) 679-691
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.3 , pp. 679-691
    • Er, M.J.1    Chen, W.2    Wu, S.3
  • 30
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Huang G.-B., Saratchandran P., and Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans. Neural Networks 16 1 (2005) 57-67
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 31
    • 13844266749 scopus 로고    scopus 로고
    • Data classification with radial basis function networks based on a novel kernel density estimation algorithm
    • Oyang Y.J., Hwang S.C., Ou Y.Y., Chen C.Y., and Chen Z.W. Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Trans. Neural Networks 16 1 (2005) 225-236
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 225-236
    • Oyang, Y.J.1    Hwang, S.C.2    Ou, Y.Y.3    Chen, C.Y.4    Chen, Z.W.5
  • 32
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2 (1994) 267-278
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 33
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23 (1993) 665-685
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.-S.R.1
  • 34
    • 58849144238 scopus 로고    scopus 로고
    • Knowledge structure knowledge granulation and knowledge distance in a knowledge base
    • Qian Y., Liang J., and Dang C. Knowledge structure knowledge granulation and knowledge distance in a knowledge base. Int. J. Approx. Reason. 50 1 (2009) 174-188
    • (2009) Int. J. Approx. Reason. , vol.50 , Issue.1 , pp. 174-188
    • Qian, Y.1    Liang, J.2    Dang, C.3
  • 35
    • 44349111128 scopus 로고    scopus 로고
    • Combination entropy, and combination granulation in rough set theory
    • Qian Y., and Liang J. Combination entropy, and combination granulation in rough set theory. Int. J. Uncertain. Fuzz. Knowledge-Based Syst. 16 2 (2008) 179-193
    • (2008) Int. J. Uncertain. Fuzz. Knowledge-Based Syst. , vol.16 , Issue.2 , pp. 179-193
    • Qian, Y.1    Liang, J.2
  • 36
    • 55649101249 scopus 로고    scopus 로고
    • Optimization of fuzzy set-fuzzy systems based on IG by means of GAs with successive tuning method
    • Park K.J., Oh S.K., and Kim H.K. Optimization of fuzzy set-fuzzy systems based on IG by means of GAs with successive tuning method. J. Elect. Eng. Technol. 3 1 (2008) 101-107
    • (2008) J. Elect. Eng. Technol. , vol.3 , Issue.1 , pp. 101-107
    • Park, K.J.1    Oh, S.K.2    Kim, H.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.