-
1
-
-
36149010770
-
-
10.1103/PhysRev.72.26
-
U. Fano, Phys. Rev. 72, 26 (1947). 10.1103/PhysRev.72.26
-
(1947)
Phys. Rev.
, vol.72
, pp. 26
-
-
Fano, U.1
-
3
-
-
33645205410
-
-
10.1103/PhysRev.163.238
-
H. Bilger, Phys. Rev. 163, 238 (1967). 10.1103/PhysRev.163.238
-
(1967)
Phys. Rev.
, vol.163
, pp. 238
-
-
Bilger, H.1
-
4
-
-
84922552732
-
-
Oxford University Press, New York, 10.1093/acprof:oso/9780198527848.001. 0001
-
H. Spieler, Semiconductor Detector Systems (Oxford University Press, New York, 2005). 10.1093/acprof:oso/9780198527848.001.0001
-
(2005)
Semiconductor Detector Systems
-
-
Spieler, H.1
-
5
-
-
36849112146
-
-
10.1063/1.1656484
-
C. Klein, J. Appl. Phys. 39, 2029 (1968). 10.1063/1.1656484
-
(1968)
J. Appl. Phys.
, vol.39
, pp. 2029
-
-
Klein, C.1
-
6
-
-
33748075165
-
-
10.1016/j.nima.2006.05.085
-
R. Devanathan, L. R. Corrales, F. Gao, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. A 565, 637 (2006). 10.1016/j.nima.2006.05.085
-
(2006)
Nucl. Instrum. Methods Phys. Res. A
, vol.565
, pp. 637
-
-
Devanathan, R.1
Corrales, L.R.2
Gao, F.3
Weber, W.J.4
-
7
-
-
38349076292
-
-
10.1016/j.nima.2007.11.009
-
D. V. Jordan, A. S. Reinolds, J. E. Jaffe, K. K. Anderson, L. R. Corralesa, and A. J. Peurrung, Nucl. Instrum. Methods Phys. Res. A 585, 146 (2008). 10.1016/j.nima.2007.11.009
-
(2008)
Nucl. Instrum. Methods Phys. Res. A
, vol.585
, pp. 146
-
-
Jordan, D.V.1
Reinolds, A.S.2
Jaffe, J.E.3
Anderson, K.K.4
Corralesa, L.R.5
Peurrung, A.J.6
-
8
-
-
0005085691
-
-
10.1103/PhysRev.139.A1702
-
W. van Roosbroeck, Phys. Rev. 139, A1702 (1965). 10.1103/PhysRev.139. A1702
-
(1965)
Phys. Rev.
, vol.139
, pp. 1702
-
-
Van Roosbroeck, W.1
-
10
-
-
34547628043
-
-
10.1103/PhysRevE.76.011128
-
A. V. Subashiev and S. Luryi, Phys. Rev. E 76, 011128 (2007). 10.1103/PhysRevE.76.011128
-
(2007)
Phys. Rev. e
, vol.76
, pp. 011128
-
-
Subashiev, A.V.1
Luryi, S.2
-
11
-
-
0043088752
-
-
10.1063/1.1733154
-
J. K. Mackenzie, J. Chem. Phys. 37, 723 (1962). 10.1063/1.1733154
-
(1962)
J. Chem. Phys.
, vol.37
, pp. 723
-
-
MacKenzie, J.K.1
-
13
-
-
0001100583
-
-
10.1007/PL00009233
-
E. G. Coffman, Jr., L. Flatto, P. Jelenkovich, and B. Poonen, Algorithmica 22, 448 (1998). 10.1007/PL00009233
-
(1998)
Algorithmica
, vol.22
, pp. 448
-
-
Coffman, Jr.E.G.1
Flatto, L.2
Jelenkovich, P.3
Poonen, B.4
-
15
-
-
12044256185
-
-
The random parking problem considered here can be viewed as a one-dimensional example of a more general class of problems known as the irreversible random sequential absorption (RSA). For a thorough review of RSA models that include both 1D lattice models and various non-1D models, see, e.g., 10.1103/RevModPhys.65.1281
-
The random parking problem considered here can be viewed as a one-dimensional example of a more general class of problems known as the irreversible random sequential absorption (RSA). For a thorough review of RSA models that include both 1D lattice models and various non-1D models, see, e.g., J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993); more recent results are reviewed in. 10.1103/RevModPhys.65.1281
-
(1993)
Rev. Mod. Phys.
, vol.65
, pp. 1281
-
-
Evans, J.W.1
-
16
-
-
0001538737
-
-
Similar models also arise in polymer chemical reactions. Thus, González [ 10.1016/0301-0104(74)80063-7
-
Similar models also arise in polymer chemical reactions. Thus, González [J. J. González, P. C. Hemmer, and J. S. Høye, Chem. Phys. 3, 228 (1974)] have used an analogous model to study the kinetics of random sequential reactions (e.g., oxidation) for an infinite 1D polymer system when a reacted unit protects a certain number of its neighbors against the reaction. 10.1016/0301-0104(74)80063-7
-
(1974)
Chem. Phys.
, vol.3
, pp. 228
-
-
González, J.J.1
Hemmer, P.C.2
Høye, J.S.3
-
17
-
-
0039823454
-
-
10.1063/1.1726548
-
B. Widom, J. Chem. Phys. 44, 3888 (1966). 10.1063/1.1726548
-
(1966)
J. Chem. Phys.
, vol.44
, pp. 3888
-
-
Widom, B.1
-
19
-
-
0004087551
-
-
The 1D kinetic equation can be obtained from the Boltzmann equation for a particle distribution function in the phase space by integrating it over the surface of constant energy, see, North-Holland, Amsterdam
-
The 1D kinetic equation can be obtained from the Boltzmann equation for a particle distribution function in the phase space by integrating it over the surface of constant energy, see V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (North-Holland, Amsterdam, 1991), Appendix 7.
-
(1991)
Nonradiative Recombination in Semiconductors
-
-
Abakumov, V.N.1
Perel, V.I.2
Yassievich, I.N.3
-
20
-
-
0033969782
-
-
10.1016/S0927-7757(99)00409-4
-
J. Talbot, G. Tarjus, P. R. Van Tassel, and P. Viot, Colloids Surf., A 165, 287 (2000). 10.1016/S0927-7757(99)00409-4
-
(2000)
Colloids Surf., A
, vol.165
, pp. 287
-
-
Talbot, J.1
Tarjus, G.2
Van Tassel, P.R.3
Viot, P.4
-
21
-
-
35949013161
-
-
10.1103/RevModPhys.60.663
-
H. Bichsel, Rev. Mod. Phys. 60, 663 (1988). 10.1103/RevModPhys.60.663
-
(1988)
Rev. Mod. Phys.
, vol.60
, pp. 663
-
-
Bichsel, H.1
-
22
-
-
33846908477
-
-
10.1016/j.nimb.2006.11.031
-
F. Gao, L. W. Campbell, R. Devanathan, Y. L. Xie, Y. Zang, A. J. Peurrung, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 255, 286 (2007). 10.1016/j.nimb.2006.11.031
-
(2007)
Nucl. Instrum. Methods Phys. Res. B
, vol.255
, pp. 286
-
-
Gao, F.1
Campbell, L.W.2
Devanathan, R.3
Xie, Y.L.4
Zang, Y.5
Peurrung, A.J.6
Weber, W.J.7
-
24
-
-
0004149484
-
-
Cambridge University, Cambridge
-
J. Ziman, Models of Disorder (Cambridge University, Cambridge, 1979), Chap., p. 211.
-
(1979)
Models of Disorder
, pp. 211
-
-
Ziman, J.1
-
25
-
-
70350124033
-
-
10.1021/jp9018734
-
B. Lin, D. Valley, M. Meron, B. Cui, H. My Ho, and S. A. Rice, J. Phys. Chem. B 113, 13742 (2009). 10.1021/jp9018734
-
(2009)
J. Phys. Chem. B
, vol.113
, pp. 13742
-
-
Lin, B.1
Valley, D.2
Meron, M.3
Cui, B.4
My Ho, H.5
Rice, S.A.6
-
26
-
-
0004056428
-
-
3rd ed. (Pergamon, Oxford, England
-
L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, Oxford, England, 1980), Part 1, Sec. 112, p. 342.
-
(1980)
Statistical Physics
, pp. 342
-
-
Landau, L.D.1
Lifshitz, E.M.2
|