메뉴 건너뛰기




Volumn 62, Issue 1, 2010, Pages 24-29

Asynchronous data assimilation with the EnKF

Author keywords

[No Author keywords available]

Indexed keywords

ATMOSPHERIC MODELING; DATA ASSIMILATION; ENSEMBLE FORECASTING; FOUR-DIMENSIONAL MODELING; KALMAN FILTER; OBSERVATIONAL METHOD; WEATHER FORECASTING;

EID: 77249119807     PISSN: 02806495     EISSN: 16000870     Source Type: Journal    
DOI: 10.1111/j.1600-0870.2009.00417.x     Document Type: Article
Times cited : (115)

References (21)
  • 1
    • 0042821672 scopus 로고    scopus 로고
    • A local least squares framework for ensemble filtering
    • Anderson, J.L. 2003. A local least squares framework for ensemble filtering. Mon. Wea. Rev. 131, 634-642.
    • (2003) Mon. Wea. Rev. , vol.131 , pp. 634-642
    • Anderson, J.L.1
  • 2
    • 0003570571 scopus 로고
    • Factorization Methods for Discrete Sequential Estimation
    • Academic Press, New York
    • Bierman, G.J. 1977. Factorization Methods for Discrete Sequential Estimation, Academic Press, New York, 241.
    • (1977) , pp. 241
    • Bierman, G.J.1
  • 3
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects
    • Bishop, C.H., Etherton, B. andMajumdar, S.J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Wea. Rev. 129, 420-436.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.2    Majumdar, S.J.3
  • 4
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., van Leeuwen, P.J. and Evensen, G. 1998. Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev. 126, 1719-1724.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 1719-1724
    • Burgers, G.1    van Leeuwen, P.J.2    Evensen, G.3
  • 5
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophicmodel using Monte-Carlomethods to forecast error statistic
    • Evensen, G. 1994. Sequential data assimilation with a nonlinear quasigeostrophicmodel using Monte-Carlomethods to forecast error statistic. J. Geophys. Res. 99, 10143-10162.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 6
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: theoretical formulation and practical implementation
    • Evensen, G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343-367.
    • (2003) Ocean Dyn. , vol.53 , pp. 343-367
    • Evensen, G.1
  • 7
    • 84895413948 scopus 로고    scopus 로고
    • Data Assimilation: The Ensemble Kalman Filter
    • Springer, Berlin
    • Evensen, G. 2007. Data Assimilation: The Ensemble Kalman Filter, Springer, Berlin, 279.
    • (2007) , pp. 279
    • Evensen, G.1
  • 8
    • 0033942436 scopus 로고    scopus 로고
    • An ensemble Kalman smoother for nonlinear dynamics
    • Evensen, G. and van Leeuwen, P.J. 2000. An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev. 128, 1852-1867.
    • (2000) Mon. Wea. Rev. , vol.128 , pp. 1852-1867
    • Evensen, G.1    van Leeuwen, P.J.2
  • 9
    • 33846306308 scopus 로고    scopus 로고
    • Acomparative study of 4DVAR and a 4D Ensemble Kalman Filter: perfect model simulations with Lorenz-96
    • Fertig, E.J., Harlim, J. and Hunt, B.R. 2007.Acomparative study of 4DVAR and a 4D Ensemble Kalman Filter: perfect model simulations with Lorenz-96. Tellus 59A, 96-100.
    • (2007) Tellus , vol.59 A , pp. 96-100
    • Fertig, E.J.1    Harlim, J.2    Hunt, B.R.3
  • 10
    • 33846861503 scopus 로고    scopus 로고
    • On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation
    • Fisher, M., Leutbecher, M. and Kelly, G.A. 2005. On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc. 131, 3235-3246.
    • (2005) Quart. J. Roy. Meteor. Soc. , vol.131 , pp. 3235-3246
    • Fisher, M.1    Leutbecher, M.2    Kelly, G.A.3
  • 11
    • 0035506430 scopus 로고    scopus 로고
    • Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
    • Hamill, T.M. and Whitaker, J.S. 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev. 129, 2776-2790.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 2776-2790
    • Hamill, T.M.1    Whitaker, J.S.2
  • 12
    • 34548704863 scopus 로고    scopus 로고
    • Four-dimensional local ensemble transform Kalman filter: numerical experiments with a global circulation model
    • Harlim, J. and Hunt, B.R. 2007. Four-dimensional local ensemble transform Kalman filter: numerical experiments with a global circulation model. Tellus 59A, 731-748.
    • (2007) Tellus , vol.59 A , pp. 731-748
    • Harlim, J.1    Hunt, B.R.2
  • 13
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman Filter for atmospheric data assimilation
    • Houtekamer, P.L. and Mitchell, H.L. 2001. A sequential ensemble Kalman Filter for atmospheric data assimilation. Mon. Wea. Rev. 129, 123-137.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 14
    • 3843055922 scopus 로고    scopus 로고
    • Four-dimensional ensemble Kalman filtering
    • Hunt, B.R., Kalnay, E., Kostelich, E.J., Ott, E., Patil, D. J, and coauthors. 2004. Four-dimensional ensemble Kalman filtering. Tellus 56A, 273-277.
    • (2004) Tellus , vol.56 A , pp. 273-277
    • Hunt, B.R.1    Kalnay, E.2    Kostelich, E.J.3    Ott, E.4    Patil, D.J.5
  • 15
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter
    • Hunt, B.R., Kostelich, E.J. and Szunyogh, I. 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D 230, 112-126.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.J.2    Szunyogh, I.3
  • 16
    • 8844258829 scopus 로고    scopus 로고
    • A local ensemble Kalman filter for atmospheric data assimilation
    • Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V., Kostelich, E.J. and coauthors. 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A, 415-428.
    • (2004) Tellus , vol.56 A , pp. 415-428
    • Ott, E.1    Hunt, B.R.2    Szunyogh, I.3    Zimin, A.V.4    Kostelich, E.J.5
  • 17
    • 0031742114 scopus 로고    scopus 로고
    • A singular evolutive extended Kalman filter for data assimilation in oceanography
    • Pham, D.T., Verron, J. and Roubaud, M.C. 1998. A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16, 323-340.
    • (1998) J. Mar. Syst. , vol.16 , pp. 323-340
    • Pham, D.T.1    Verron, J.2    Roubaud, M.C.3
  • 18
    • 39049157179 scopus 로고    scopus 로고
    • A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters
    • Sakov, P. and Oke, P.R. 2008. A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus 60A, 361-371.
    • (2008) Tellus , vol.60 A , pp. 361-371
    • Sakov, P.1    Oke, P.R.2
  • 19
    • 63549084854 scopus 로고    scopus 로고
    • Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data
    • Sun, A.Y., Morris, A. and Mohanty, S. 2009. Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data. Adv. Water Resour. 32, 280-292.
    • (2009) Adv. Water Resour. , vol.32 , pp. 280-292
    • Sun, A.Y.1    Morris, A.2    Mohanty, S.3
  • 21
    • 0000261492 scopus 로고    scopus 로고
    • Data assimilation and inverse methods in terms of a probabilistic formulation
    • van Leeuwen, P.J. and Evensen, G. 1996. Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Wea. Rev. 124, 2898-2913.
    • (1996) Mon. Wea. Rev. , vol.124 , pp. 2898-2913
    • van Leeuwen, P.J.1    Evensen, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.