메뉴 건너뛰기




Volumn 17, Issue 4, 2009, Pages 427-439

Quaternion m set with none zero critical points

Author keywords

Fractal; Julia sets; Mandelbrot sets; Multiple critical points; Quaternion

Indexed keywords

FRACTALS; SET THEORY; TOPOLOGY;

EID: 77249112777     PISSN: 0218348X     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218348X09004569     Document Type: Article
Times cited : (7)

References (20)
  • 4
    • 0020151361 scopus 로고
    • Generation and display of geometric fractals in 3-D
    • A. Norton, Generation and display of geometric fractals in 3-D, Comput. Graph. 16(3) (1982) 61-67.
    • (1982) Comput. Graph. , vol.16 , Issue.3 , pp. 61-67
    • Norton, A.1
  • 5
    • 0024904381 scopus 로고
    • Julia sets in the quaternions
    • A. Norton, Julia sets in the quaternions, Comput. Graph. 13(2) (1989) 267-278.
    • (1989) Comput. Graph. , vol.13 , Issue.2 , pp. 267-278
    • Norton, A.1
  • 6
    • 0010964557 scopus 로고
    • Quaternionic Fatou-Julia sets
    • J. A. R. Holbrook, Quaternionic Fatou-Julia sets, Ann. Sci. Math. Quebec 11(1) (1987) 79-94.
    • (1987) Ann. Sci. Math. Quebec , vol.11 , Issue.1 , pp. 79-94
    • Holbrook, J.A.R.1
  • 7
    • 0010532699 scopus 로고
    • Generalization of the mandelbrot set: Quaternionic quadratic maps
    • J. Gomatam, J. Doyle, B. Steves et al., Generalization of the mandelbrot set: quaternionic quadratic maps, Chaos Solitons Fractals 5(6) (1995) 971-986.
    • (1995) Chaos Solitons Fractals , vol.5 , Issue.6 , pp. 971-986
    • Gomatam, J.1    Doyle, J.2    Steves, B.3
  • 8
    • 0033477754 scopus 로고    scopus 로고
    • Generalisation of the Mandelbrot set to integral functions of quaternions
    • J. Gomatam and I. McFarlane, Generalisation of the Mandelbrot set to integral functions of quaternions, Discrete Contin. Dyn. Syst. 5(1) (1999) 107-116.
    • (1999) Discrete Contin. Dyn. Syst. , vol.5 , Issue.1 , pp. 107-116
    • Gomatam, J.1    McFarlane, I.2
  • 10
    • 74849087562 scopus 로고    scopus 로고
    • Symmetry properties of quaternionic and biquaternionic analogs of Julia sets
    • A. A. Bogush, A. Z. Gazizov, Y. A. Kurochkin et al., Symmetry properties of quaternionic and biquaternionic analogs of Julia sets, Ukr. Phys. J. 48(4) (2003) 295-299.
    • (2003) Ukr. Phys. J. , vol.48 , Issue.4 , pp. 295-299
    • Bogush, A.A.1    Gazizov, A.Z.2    Kurochkin, Y.A.3
  • 12
    • 0347939420 scopus 로고    scopus 로고
    • A generalized Mandelbrot set for bicomplex numbers
    • D. Rochon, A generalized Mandelbrot set for bicomplex numbers, Fractals 8(4) (2000) 355-368.
    • (2000) Fractals , vol.8 , Issue.4 , pp. 355-368
    • Rochon, D.1
  • 13
    • 0036695930 scopus 로고    scopus 로고
    • Generalized Mandelbrot sets for meromorphic complex and quaternionic maps
    • W. Buchanan, J. Gomantam and S. Bonnie, Generalized Mandelbrot sets for meromorphic complex and quaternionic maps, Int. J. Bifurcat. Chaos 12(8) (2002) 1755-1777.
    • (2002) Int. J. Bifurcat. Chaos , vol.12 , Issue.8 , pp. 1755-1777
    • Buchanan, W.1    Gomantam, J.2    Bonnie, S.3
  • 14
    • 25844483878 scopus 로고    scopus 로고
    • Dynamics of a family of quadratic maps in the quaternion space
    • N. Shizuo, Dynamics of a family of quadratic maps in the quaternion space, Int. J. Bifurcat. Chaos 15(8) (2005) 2535-2543.
    • (2005) Int. J. Bifurcat. Chaos , vol.15 , Issue.8 , pp. 2535-2543
    • Shizuo, N.1
  • 15
    • 13444259724 scopus 로고    scopus 로고
    • Symbolic dynamics in investigation of quaternionic Julia sets
    • M. Lakner, M. Skapin-Rugelj and P. Petek, Symbolic dynamics in investigation of quaternionic Julia sets, Chaos Solitons Fractals 24(5) (2005) 1189-1201.
    • (2005) Chaos Solitons Fractals , vol.24 , Issue.5 , pp. 1189-1201
    • Lakner, M.1    Skapin-Rugelj, M.2    Petek, P.3
  • 17
    • 0001539882 scopus 로고
    • On the dynamics of polynomial-like mappings
    • A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ec. Norm. Sup. 18(4) (1985) 287-343.
    • (1985) Ann. Sci. Ec. Norm. Sup. , vol.18 , Issue.4 , pp. 287-343
    • Douady, A.1    Hubbard, J.H.2
  • 18
    • 0030100918 scopus 로고    scopus 로고
    • Graphic tools to analyse one-dimensional quadratic maps
    • DOI 10.1016/0097-8493(95)00134-4
    • M. Romera, G. Pastor and F. Montoya, Graphic tools to analyse one-dimensional quadratic maps, Comput. Graph. 20(2) (1996) 333-339. (Pubitemid 126402690)
    • (1996) Computers and Graphics (Pergamon) , vol.20 , Issue.2 , pp. 333-339
    • Romera, M.1    Pastor, G.2    Montoya, F.3
  • 19
    • 0037562826 scopus 로고    scopus 로고
    • How to work with one-dimensional quadratic maps
    • G. Pastor, M. Romera, G. Alvarez et al., How to work with one-dimensional quadratic maps, Chaos Solitons Fractals 18(5) (2003) 899-915.
    • (2003) Chaos Solitons Fractals , vol.18 , Issue.5 , pp. 899-915
    • Pastor, G.1    Romera, M.2    Alvarez, G.3
  • 20
    • 0025549249 scopus 로고
    • Interactive visualization of quaternion Julia sets
    • IEEE Computer Society Press, San Francisco, California
    • J. C. Hart, L. H. Kauffman and D. J. Sandin, Interactive visualization of quaternion Julia sets, in Proceedings of the 1st Conference on Visualization '90 (IEEE Computer Society Press, San Francisco, California, 1990) pp. 209-218.
    • (1990) Proceedings of the 1st Conference on Visualization '90 , pp. 209-218
    • Hart, J.C.1    Kauffman, L.H.2    Sandin, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.