메뉴 건너뛰기




Volumn 136, Issue 646, 2010, Pages 132-145

Ensemble data assimilation with the CNMCA regional forecasting system

Author keywords

Linear gaussian errors; Model error parametrization

Indexed keywords

ENSEMBLE DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; FORECAST AND ANALYSIS; FORECASTING SYSTEM; GAUSSIAN ERRORS; GAUSSIANITY; MODEL ERRORS; MODEL STATE; OPERATIONAL DATA; PARAMETRIZATIONS; PROGNOSTIC MODEL; REGIONAL NUMERICAL WEATHER PREDICTIONS; ROOT MEAN SQUARE ERRORS; SCATTEROMETERS; SQUARE-ROOT; STATISTICAL DISTRIBUTION; VARIATIONAL METHODS;

EID: 77249105379     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.553     Document Type: Article
Times cited : (32)

References (45)
  • 1
    • 34247642674 scopus 로고    scopus 로고
    • An adaptive covariance inflation error correction algorithm for ensemble filters
    • Anderson JL. 2007a. An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus 59A: 210-224.
    • (2007) Tellus , vol.59 A , pp. 210-224
    • Anderson, J.L.1
  • 2
    • 34248655165 scopus 로고    scopus 로고
    • Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter
    • Anderson JL. 2007b. Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D 230: 99-111.
    • (2007) Physica D , vol.230 , pp. 99-111
    • Anderson, J.L.1
  • 3
    • 58049084742 scopus 로고    scopus 로고
    • Spatially and temporally varying adaptive covariance inflation for ensemble filters
    • Anderson JL. 2009. Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus 61A: 72-83.
    • (2009) Tellus , vol.61 A , pp. 72-83
    • Anderson, J.L.1
  • 4
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • Anderson JL, Anderson SL. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127: 2741-2758.
    • (1999) Mon. Weather Rev , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 5
    • 33645575318 scopus 로고    scopus 로고
    • Local ensemble Kalman filtering in the presence of model bias
    • Baek S-J, Hunt BR, Kalnay E, Ott E, Szunyogh I. 2006. Local ensemble Kalman filtering in the presence of model bias. Tellus 58A: 293-306.
    • (2006) Tellus , vol.58 A , pp. 293-306
    • Baek, S.-J.1    Hunt, B.R.2    Kalnay, E.3    Ott, E.4    Szunyogh, I.5
  • 6
    • 15444379610 scopus 로고    scopus 로고
    • Impact of a variational objective analysis scheme on a regional area numerical model: The Italian Air Force Weather Service experience
    • Bonavita M, Torrisi L. 2005. Impact of a variational objective analysis scheme on a regional area numerical model: The Italian Air Force Weather Service experience. Meteorol. Atmos. Phys. 88: 39-52.
    • (2005) Meteorol. Atmos. Phys , vol.88 , pp. 39-52
    • Bonavita, M.1    Torrisi, L.2
  • 7
    • 57349184316 scopus 로고    scopus 로고
    • The ensemble Kalman filter in an operational regional NWP system: Preliminary results with real observations
    • Bonavita M, Torrisi L, Marcucci F. 2008. The ensemble Kalman filter in an operational regional NWP system: Preliminary results with real observations. Q. J. R. Meteorol. Soc. 134: 1733-1744.
    • (2008) Q. J. R. Meteorol. Soc , vol.134 , pp. 1733-1744
    • Bonavita, M.1    Torrisi, L.2    Marcucci, F.3
  • 8
    • 0033403384 scopus 로고    scopus 로고
    • Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System
    • Buizza R, Miller M, Palmer TN. 1999. Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Q. J. R. Meteorol. Soc. 125: 2887-2908.
    • (1999) Q. J. R. Meteorol. Soc , vol.125 , pp. 2887-2908
    • Buizza, R.1    Miller, M.2    Palmer, T.N.3
  • 9
    • 0028561614 scopus 로고
    • A strategy for operational implementation of 4D-Var, using an incremental approach
    • Courtier P, Thépaut J-N, Hollingsworth A. 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120: 1367-1387.
    • (1994) Q. J. R. Meteorol. Soc , vol.120 , pp. 1367-1387
    • Courtier, P.1    Thépaut, J.-N.2    Hollingsworth, A.3
  • 10
    • 33847379878 scopus 로고    scopus 로고
    • Estimating and correcting global weather model error
    • Danforth CM, Kalnay E, Miyoshi T. 2007. Estimating and correcting global weather model error. Mon. Weather Rev. 135: 281-299.
    • (2007) Mon. Weather Rev , vol.135 , pp. 281-299
    • Danforth, C.M.1    Kalnay, E.2    Miyoshi, T.3
  • 11
    • 0000674568 scopus 로고    scopus 로고
    • Data assimilation in the presence of forecast bias
    • Dee DP, Da Silva AM. 1998. Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc. 124: 269-295.
    • (1998) Q. J. R. Meteorol. Soc , vol.124 , pp. 269-295
    • Dee, D.P.1    da Silva, A.M.2
  • 12
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi- geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi- geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5): 10143-10162.
    • (1994) J. Geophys. Res , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 13
    • 34548798092 scopus 로고    scopus 로고
    • Assimilating non-local observations with a local ensemble Kalman filter
    • Fertig EJ, Hunt BR, Ott E, Szunyogh I. 2007. Assimilating non-local observations with a local ensemble Kalman filter. Tellus 59A: 719-730.
    • (2007) Tellus , vol.59 A , pp. 719-730
    • Fertig, E.J.1    Hunt, B.R.2    Ott, E.3    Szunyogh, I.4
  • 14
    • 33745223678 scopus 로고    scopus 로고
    • A data assimilation method for log- normally distributed observational errors
    • Fletcher SJ, Zupanski M. 2006. A data assimilation method for log- normally distributed observational errors. Q. J. R. Meteorol. Soc. 132: 2505-2519.
    • (2006) Q. J. R. Meteorol. Soc , vol.132 , pp. 2505-2519
    • Fletcher, S.J.1    Zupanski, M.2
  • 15
    • 27744494106 scopus 로고    scopus 로고
    • Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches
    • Hamill TM, Whitaker JS. 2005. Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Weather Rev. 133: 3132-3147.
    • (2005) Mon. Weather Rev , vol.133 , pp. 3132-3147
    • Hamill, T.M.1    Whitaker, J.S.2
  • 16
    • 0035506430 scopus 로고    scopus 로고
    • Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
    • Hamill TM, Whitaker JS, Snyder C. 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129: 2776-2790.
    • (2001) Mon. Weather Rev , vol.129 , pp. 2776-2790
    • Hamill, T.M.1    Whitaker, J.S.2    Snyder, C.3
  • 17
    • 34247587126 scopus 로고    scopus 로고
    • Anon-Gaussianensemblefilterforassimilating infrequent noisy observations
    • Harlim J, Hunt BR.2007.Anon-Gaussianensemblefilterforassimilating infrequent noisy observations. Tellus 59A: 225-237.
    • (2007) Tellus , vol.59 A , pp. 225-237
    • Harlim, J.1    Hunt, B.R.2
  • 18
    • 77249125656 scopus 로고    scopus 로고
    • Third SRNWP Workshop on short range ensemble prediction systems, Rome, Italy, 10-12 December 2007. Available online at
    • Houtekamer PL. 2007. 'Reliable forecast ensembles based on initial conditions from an ensemble Kalman filter.' Third SRNWP Workshop on short range ensemble prediction systems, Rome, Italy, 10-12 December 2007. Available online at http://www.meteoam.it/modules/newsPage/19072007/3SREPS WS Programme3.htm.
    • Reliable Forecast Ensembles Based On Initial Conditions From An Ensemble Kalman Filter
    • Houtekamer, P.L.1
  • 19
    • 0032024819 scopus 로고    scopus 로고
    • Dataassimilationusing an ensemble Kalman filter technique
    • HoutekamerPL,Mitchell HL. 1998. Dataassimilationusing an ensemble Kalman filter technique. Mon. Weather Rev. 126: 796-811.
    • (1998) Mon. Weather Rev , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 22
    • 0000171374 scopus 로고
    • Robust statistics: A review
    • Huber PJ. 1972. Robust statistics: A review. Ann. Math. Stat. 43: 1041-1067.
    • (1972) Ann. Math. Stat , vol.43 , pp. 1041-1067
    • Huber, P.J.1
  • 24
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    • Hunt BR, Kostelich EJ, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D 230: 112-126.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.J.2    Szunyogh, I.3
  • 27
    • 77249169004 scopus 로고    scopus 로고
    • rd Ensemble data assimilation Workshop, Balcones Springs, Austin, Texas, USA. Available
    • rd Ensemble data assimilation Workshop, Balcones Springs, Austin, Texas, USA. Available at http://atmo.tamu.edu/profile/sub/282.
    • (2008) Accelerating the Spin-up of Enkf
    • Kalnay, E.1
  • 28
    • 4444303259 scopus 로고    scopus 로고
    • Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth
    • Lawson WG, Hansen JA. 2004. Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Weather Rev. 132: 1966-1981.
    • (2004) Mon. Weather Rev , vol.132 , pp. 1966-1981
    • Lawson, W.G.1    Hansen, J.A.2
  • 29
    • 43049145131 scopus 로고    scopus 로고
    • The impact of ensemble filter definition on the assimilation of temperature profiles in the tropical Pacific
    • Leeuwenburgh O, Evensen G, Bertino L. 2005. The impact of ensemble filter definition on the assimilation of temperature profiles in the tropical Pacific. Q. J. R. Meteorol. Soc. 131: 3291-3300.
    • (2005) Q. J. R. Meteorol. Soc , vol.131 , pp. 3291-3300
    • Leeuwenburgh, O.1    Evensen, G.2    Bertino, L.3
  • 31
    • 66849124453 scopus 로고    scopus 로고
    • Simultaneous estimation of covariance inflation and observation errors within ensemble Kalman filter
    • Li H, Kalnay E, Miyoshi T. 2009. Simultaneous estimation of covariance inflation and observation errors within ensemble Kalman filter. Q. J. R. Meteorol. Soc. 135: 523-533.
    • (2009) Q. J. R. Meteorol. Soc , vol.135 , pp. 523-533
    • Li, H.1    Kalnay, E.2    Miyoshi, T.3
  • 32
    • 57349114853 scopus 로고    scopus 로고
    • Available from the author, detlev.majewski@dwd.de
    • Majewski D. 2008. 'HRM User's Guide.' Available from the author (detlev.majewski@dwd.de).
    • (2008) Hrm User's Guide
    • Majewski, D.1
  • 34
    • 70350341250 scopus 로고    scopus 로고
    • Ensemble Kalman filter configurations and performance with the logistic map
    • early online release, DOI:10.1175/2009MWR2823.1
    • Mitchell HL, Houtekamer PL. 2009. Ensemble Kalman filter configurations and performance with the logistic map. Mon. Weather Rev., early online release, DOI:10.1175/2009MWR2823.1.
    • (2009) Mon. Weather Rev
    • Mitchell, H.L.1    Houtekamer, P.L.2
  • 36
    • 0027040023 scopus 로고
    • The National Meteorological Center's spectral statistical-interpolation analysis system
    • Parrish DF, Derber JC. 1992. The National Meteorological Center's spectral statistical-interpolation analysis system. Mon. Weather Rev. 120: 1747-1763.
    • (1992) Mon. Weather Rev , vol.120 , pp. 1747-1763
    • Parrish, D.F.1    Derber, J.C.2
  • 37
    • 39049173291 scopus 로고    scopus 로고
    • Implications of the form of the ensemble transformation in the ensemble square root filters
    • Sakov P, Oke PR. 2008. Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Weather Rev. 136: 1042-1053.
    • (2008) Mon. Weather Rev , vol.136 , pp. 1042-1053
    • Sakov, P.1    Oke, P.R.2
  • 38
    • 31544461628 scopus 로고    scopus 로고
    • A kinetic energy backscatter algorithm for use in ensemble prediction systems
    • Shutts GJ. 2005. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131: 3079-3102.
    • (2005) Q. J. R. Meteorol. Soc , vol.131 , pp. 3079-3102
    • Shutts, G.J.1
  • 41
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker JS, Hamill TM. 2002. Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130: 1913-1924.
    • (2002) Mon. Weather Rev , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 42
    • 44449095043 scopus 로고    scopus 로고
    • Ensemble data assimilation with the NCEP global forecast system
    • Whitaker JS, Hamill TM, Wei X, Song Y, Toth Z. 2008. Ensemble data assimilation with the NCEP global forecast system. Mon. Weather Rev. 136: 463-482.
    • (2008) Mon. Weather Rev , vol.136 , pp. 463-482
    • Whitaker, J.S.1    Hamill, T.M.2    Wei, X.3    Song, Y.4    Toth, Z.5
  • 43
    • 2442717392 scopus 로고    scopus 로고
    • Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter
    • Zhang F, Snyder C, Sun J. 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev. 132: 1238-1253.
    • (2004) Mon. Weather Rev , vol.132 , pp. 1238-1253
    • Zhang, F.1    Snyder, C.2    Sun, J.3
  • 44
    • 33644881232 scopus 로고    scopus 로고
    • Model error estimation employing an ensemble data assimilation approach
    • Zupanski D, Zupanski M. 2006. Model error estimation employing an ensemble data assimilation approach. Mon. Weather Rev. 134: 1337-1354.
    • (2006) Mon. Weather Rev , vol.134 , pp. 1337-1354
    • Zupanski, D.1    Zupanski, M.2
  • 45
    • 24944523803 scopus 로고    scopus 로고
    • Maximum likelihood ensemble filter: Theoretical aspects
    • Zupanski M. 2005. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev. 133: 1710-1726.
    • (2005) Mon. Weather Rev , vol.133 , pp. 1710-1726
    • Zupanski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.