메뉴 건너뛰기




Volumn 67, Issue 4, 2010, Pages 317-320

Detecting adverse drug events through data mining

Author keywords

[No Author keywords available]

Indexed keywords

ANTIDIARRHEAL AGENT; ANTIEMETIC AGENT; DIPHENHYDRAMINE; FLUMAZENIL; GLUCOSE; NALOXONE; PHYTOMENADIONE; POLYSTYRENESULFONATE SODIUM;

EID: 77249087630     PISSN: 10792082     EISSN: None     Source Type: Journal    
DOI: 10.2146/ajhp090115     Document Type: Note
Times cited : (7)

References (14)
  • 1
    • 0003413171 scopus 로고    scopus 로고
    • Kohn LT, Corrigan JM, Donaldson MS, eds, Washington, DC: National Academy Press;
    • Kohn LT, Corrigan JM, Donaldson MS, eds. To err is human: building a safer health system. Washington, DC: National Academy Press; 1999.
    • (1999) To err is human: Building a safer health system
  • 2
    • 0029066463 scopus 로고
    • Incidence of adverse drug events and potential adverse drug events. Implications for prevention
    • Bates DW, Cullen DJ, Laird N et al. Incidence of adverse drug events and potential adverse drug events. Implications for prevention. JAMA. 1995;274:29-34.
    • (1995) JAMA , vol.274 , pp. 29-34
    • Bates, D.W.1    Cullen, D.J.2    Laird, N.3
  • 3
    • 0032522873 scopus 로고    scopus 로고
    • Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of prospective studies
    • Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998; 279:1200-5.
    • (1998) JAMA , vol.279 , pp. 1200-1205
    • Lazarou, J.1    Pomeranz, B.H.2    Corey, P.N.3
  • 4
    • 0037699987 scopus 로고    scopus 로고
    • Adverse drug event trigger tool: A practical methodology for measuring medication related harm
    • Rozich JD, Haraden CR, Resar RK. Adverse drug event trigger tool: a practical methodology for measuring medication related harm. Qual Saf Health Care. 2003; 12:194-7.
    • (2003) Qual Saf Health Care , vol.12 , pp. 194-197
    • Rozich, J.D.1    Haraden, C.R.2    Resar, R.K.3
  • 5
    • 77951764411 scopus 로고    scopus 로고
    • Identifying medication misadventures: Poor agreement between chart, physician, nurse, and patient reports
    • In press
    • Kaboli PJ, Glasgow JM, Jaipaul CK et al. Identifying medication misadventures: poor agreement between chart, physician, nurse, and patient reports. Pharmacotherapy. In press.
    • Pharmacotherapy
    • Kaboli, P.J.1    Glasgow, J.M.2    Jaipaul, C.K.3
  • 6
    • 0025719244 scopus 로고
    • Computerized surveillance of adverse drug events in hospital patients
    • Classen DC, Pestotnik SL, Evans RS et al. Computerized surveillance of adverse drug events in hospital patients. JAMA. 1991; 266:2847-51.
    • (1991) JAMA , vol.266 , pp. 2847-2851
    • Classen, D.C.1    Pestotnik, S.L.2    Evans, R.S.3
  • 7
    • 49849084353 scopus 로고    scopus 로고
    • Can surveillance systems identify and avert adverse drug events? A prospective evaluation of a commercial application
    • Jha AK, Laguette J, Seger A et al. Can surveillance systems identify and avert adverse drug events? A prospective evaluation of a commercial application. J Am Med Inform Assoc. 2008; 15:647-53.
    • (2008) J Am Med Inform Assoc , vol.15 , pp. 647-653
    • Jha, A.K.1    Laguette, J.2    Seger, A.3
  • 8
    • 34250709138 scopus 로고    scopus 로고
    • A systematic review of the performance characteristics of clinical event monitor signals used to detect adverse drug events in the hospital setting
    • Handles SM, Altman RL, Perera S et al. A systematic review of the performance characteristics of clinical event monitor signals used to detect adverse drug events in the hospital setting. J Am Med Inform Assoc. 2007; 14:451-7.
    • (2007) J Am Med Inform Assoc , vol.14 , pp. 451-457
    • Handles, S.M.1    Altman, R.L.2    Perera, S.3
  • 9
    • 0141563576 scopus 로고    scopus 로고
    • Data mining for the health system pharmacist
    • Felkey BG, Liang H, Kruger KP. Data mining for the health system pharmacist. Hosp Pharm. 2003; 38:845-50.
    • (2003) Hosp Pharm , vol.38 , pp. 845-850
    • Felkey, B.G.1    Liang, H.2    Kruger, K.P.3
  • 10
    • 33750328584 scopus 로고    scopus 로고
    • Aspden P, Wolcott JA, Bootman L et al, eds, Washington, DC: National Academies Press;
    • Aspden P, Wolcott JA, Bootman L et al., eds. Preventing medication errors. Washington, DC: National Academies Press; 2007.
    • (2007) Preventing medication errors
  • 11
    • 1842447889 scopus 로고    scopus 로고
    • Aspden P, Corrigan JM, Wolcott J et al, eds, Washington, DC: National Academies Press;
    • Aspden P, Corrigan JM, Wolcott J et al., eds. Patient safety: achieving a new standard of care. Washington, DC: National Academies Press; 2004.
    • (2004) Patient safety: Achieving a new standard of care
  • 12
    • 33846665203 scopus 로고    scopus 로고
    • Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions
    • Hauben M, Horn S, Reich L. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions. Drug Saf. 2007; 30:143-55.
    • (2007) Drug Saf , vol.30 , pp. 143-155
    • Hauben, M.1    Horn, S.2    Reich, L.3
  • 13
    • 34247464176 scopus 로고    scopus 로고
    • Data mining for signals in spontaneous reporting databases: Proceed with caution
    • Stephenson WP, Hauben M. Data mining for signals in spontaneous reporting databases: proceed with caution. Pharmacoepidemiol Drug Saf. 2007; 16:359-65.
    • (2007) Pharmacoepidemiol Drug Saf , vol.16 , pp. 359-365
    • Stephenson, W.P.1    Hauben, M.2
  • 14
    • 77249143236 scopus 로고    scopus 로고
    • Witten 1H, Frank E. Data mining: practical machine learning tools and techniques. 2nd ed. San Francisco: Morgan Kaufmann; 2005:189-200.
    • Witten 1H, Frank E. Data mining: practical machine learning tools and techniques. 2nd ed. San Francisco: Morgan Kaufmann; 2005:189-200.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.