메뉴 건너뛰기




Volumn 20, Issue 1, 2010, Pages

Industrial strength COMPASS: A comprehensive algorithm and software for optimization via simulation

Author keywords

Optimization via simulation; Random search; Ranking and selection

Indexed keywords

DECISION VARIABLES; DISTRIBUTED DATA; EXPECTED VALUES; FEASIBLE REGIONS; FEASIBLE SOLUTION; INDUSTRIAL STRENGTH; INTEGER CONSTRAINTS; LOCAL PHASE; OPTIMAL SOLUTIONS; PERFORMANCE MEASURE; RANDOM SEARCHES; RANKING AND SELECTION; REALISTIC SYSTEMS; SELECTION OF THE BEST; SELECTION PROCEDURES; SIMULATION PACKAGES; STOCHASTIC SIMULATIONS; SURFACE MODELS; TEST CASE; TEST PROBLEM; TRANSITION RULE;

EID: 76849089103     PISSN: 10493301     EISSN: 15581195     Source Type: Journal    
DOI: 10.1145/1667072.1667075     Document Type: Article
Times cited : (123)

References (36)
  • 1
    • 0344182998 scopus 로고    scopus 로고
    • A simulated annealing algorithm with constant temperature for discrete stochastic optimization
    • ALREFAEI, M. H., AND ANDRAD́OTTIR, S. 1999. A simulated annealing algorithm with constant temperature for discrete stochastic optimization. Manag. Sci. 45, 748-764.
    • (1999) Manag. Sci. , vol.45 , pp. 748-764
    • Alrefaei, M.H.1    Andrad́ottir, S.2
  • 2
    • 0000930049 scopus 로고
    • A method for discrete stochastic optimization
    • ANDRAD́OTTIR, S. 1995. A method for discrete stochastic optimization. Manag. Sci. 41, 1946-1961.
    • (1995) Manag. Sci. , vol.41 , pp. 1946-1961
    • Andrad́ottir, S.1
  • 3
    • 0000450089 scopus 로고    scopus 로고
    • Accelerating the convergence of random search methods for discrete stochastic optimization
    • ANDRAD́OTTIR, S. 1999. Accelerating the convergence of random search methods for discrete stochastic optimization. ACM Trans. Model. Comput. Simul. 9, 349-380.
    • (1999) ACM Trans. Model. Comput. Simul. , vol.9 , pp. 349-380
    • Andrad́ottir, S.1
  • 4
    • 33750530850 scopus 로고    scopus 로고
    • Simulation optimization with countably infinite feasible regions: Efficiency and convergence
    • ANDRAD́OTTIR, S. 2006. Simulation optimization with countably infinite feasible regions: Efficiency and convergence. ACM Trans. Model. Comput. Simul. 16, 357-374.
    • (2006) ACM Trans. Model. Comput. Simul. , vol.16 , pp. 357-374
    • Andrad́ottir, S.1
  • 7
    • 0037334899 scopus 로고    scopus 로고
    • A framework for simulation-optimization software
    • BOESEL, J., NELSON, B. L., AND ISHII, N. 2003a. A framework for simulation-optimization software. IIE Trans. 35, 221-230.
    • (2003) IIE Trans , vol.35 , pp. 221-230
    • Boesel, J.1    Nelson, B.L.2    Ishii, N.3
  • 8
    • 0347556828 scopus 로고    scopus 로고
    • Using ranking and selection to 'clean up' after simulation optimization
    • BOESEL, J., NELSON, B. L., AND KIM, S.-H. 2003b. Using ranking and selection to 'clean up' after simulation optimization. Oper. Res. 51, 814-825.
    • (2003) Oper. Res. , vol.51 , pp. 814-825
    • Boesel, J.1    Nelson, B.L.2    Kim, S.-H.3
  • 10
    • 0034225544 scopus 로고    scopus 로고
    • Simulation budget allocation for further enhancing the efficiency of ordinal optimization
    • DOI 10.1023/A:1008349927281
    • CHEN, C.-H., LIN, J., ŸUCESAN, E., AND CHICK, S. E. 2000. Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discr. Event Dynam. Syst. Theory Appl. 10, 251-270. (Pubitemid 30891932)
    • (2000) Discrete Event Dynamic Systems: Theory and Applications , vol.10 , Issue.3 , pp. 251-270
    • Chen, C.-H.1    Lin, J.2    Yucesan, E.3    Chick, S.E.4
  • 11
    • 0035460965 scopus 로고    scopus 로고
    • New two-stage and sequential procedures for selecting the best simulated system
    • CHICK, S. E., AND INOUE, K. 2001. New two-stage and sequential procedures for selecting the best simulated system. Oper. Res. 49, 732-743. (Pubitemid 34011324)
    • (2001) Operations Research , vol.49 , Issue.5 , pp. 732-743
    • Chick, S.E.1    Inoue, K.2
  • 12
    • 0012260296 scopus 로고    scopus 로고
    • Optimization for simulation: Theory vs. practice
    • FU, M. C. 2002. Optimization for simulation: Theory vs. practice. INFORMS J. Comput. 14, 192-215.
    • (2002) INFORMS J. Comput. , vol.14 , pp. 192-215
    • Fu, M.C.1
  • 14
    • 0000554054 scopus 로고    scopus 로고
    • Stochastic comparison algorithm for discrete optimization with estimation
    • GONG,W.-B., HO, Y.-C., AND ZHAI,W. 1999. Stochastic comparison algorithm for discrete optimization with estimation. SIAM J. Optimiz. 10, 384-404.
    • (1999) SIAM J. Optimiz. , vol.10 , pp. 384-404
    • Gong, W.-B.1    Ho, Y.-C.2    Zhai, W.3
  • 15
    • 34250074431 scopus 로고
    • Ordinal optimization of discrete event dynamic systems
    • HO, Y. C., SREENIVAS, R., AND VAKILI, P. 1992. Ordinal optimization of discrete event dynamic systems. J. Disc. Event Dynam. Syst. 2, 61-88.
    • (1992) J. Disc. Event Dynam. Syst. , vol.2 , pp. 61-88
    • Ho, Y.C.1    Sreenivas, R.2    Vakili, P.3
  • 17
    • 33644525898 scopus 로고    scopus 로고
    • Discrete optimization via simulation using COMPASS
    • HONG, L. J., AND NELSON, B. L. 2006. Discrete optimization via simulation using COMPASS. Oper. Res. 54, 115-129.
    • (2006) Oper. Res. , vol.54 , pp. 115-129
    • Hong, L.J.1    Nelson, B.L.2
  • 18
    • 34648813290 scopus 로고    scopus 로고
    • A framework for locally convergent random search algorithms for discrete optimization via simulation
    • HONG, L. J., AND NELSON, B. L. 2007a. A framework for locally convergent random search algorithms for discrete optimization via simulation. ACM Trans. Model. Comput. Simul. 17, 19/1- 19/22.
    • (2007) ACM Trans. Model. Comput. Simul. , vol.17 , pp. 191-1922
    • Hong, L.J.1    Nelson, B.L.2
  • 19
    • 34248190139 scopus 로고    scopus 로고
    • Selecting the best system when systems are revealed sequentially
    • HONG, L. J., AND NELSON, B. L. 2007b. Selecting the best system when systems are revealed sequentially. IIE Trans. 39, 723-734.
    • (2007) IIE Trans , vol.39 , pp. 723-734
    • Hong, L.J.1    Nelson, B.L.2
  • 20
    • 21044438483 scopus 로고    scopus 로고
    • Evolutionary optimization in uncertain environments - A survey
    • JIN, Y. AND BRANKE, J. 2005. Evolutionary optimization in uncertain environments - A survey. IEEE Trans. Evol. Comput. 9, 303-317.
    • (2005) IEEE Trans. Evol. Comput. , vol.9 , pp. 303-317
    • Jin, Y.1    Branke, J.2
  • 21
    • 27344438965 scopus 로고    scopus 로고
    • Comparison with a standard via fully sequential procedures
    • KIM, S.-H. 2005. Comparison with a standard via fully sequential procedures. ACMTrans. Model. Comput. Simul. 15, 1-20.
    • (2005) ACMTrans. Model. Comput. Simul. , vol.15 , pp. 1-20
    • Kim, S.-H.1
  • 23
    • 33645915124 scopus 로고    scopus 로고
    • A new approach to discrete stochastic optimization problems
    • LIN, X., AND LEE, L. H. 2006. A new approach to discrete stochastic optimization problems. Eur. J. Oper. Res. 172, 761-782.
    • (2006) Eur. J. Oper. Res. , vol.172 , pp. 761-782
    • Lin, X.1    Lee, L.H.2
  • 24
    • 0035328443 scopus 로고    scopus 로고
    • Stocking retail assortments under dynamic consumer substitution
    • MAHAJAN, S., AND VAN RYZIN, G. 2001. Stocking retail assortments under dynamic consumer substitution. Oper. Res. 49, 334-351.
    • (2001) Oper. Res. , vol.49 , pp. 334-351
    • Mahajan, S.1    Van Ryzin, G.2
  • 26
    • 0036242839 scopus 로고    scopus 로고
    • Perspectives on the evolution of simulation
    • NANCE, R. E., AND SARGENT R. G. 2002. Perspectives on the evolution of simulation. Oper. Res. 50, 161-172.
    • (2002) Oper. Res. , vol.50 , pp. 161-172
    • Nance, R.E.1    Sargent, R.G.2
  • 27
    • 0035295081 scopus 로고    scopus 로고
    • Comparisons with a standard in simulation experiments
    • NELSON, B. L., AND GOLDSMAN, D. 2001. Comparisons with a standard in simulation experiments. Manag. Sci. 47, 449-463.
    • (2001) Manag. Sci. , vol.47 , pp. 449-463
    • Nelson, B.L.1    Goldsman, D.2
  • 28
    • 0035521447 scopus 로고    scopus 로고
    • Simple procedures for selecting the best simulated system when the number of alternatives is large
    • NELSON, B. L., SWANN, J., GOLDSMAN, D., AND SONG, W. 2001. Simple procedures for selecting the best simulated system when the number of alternatives is large. Oper. Res. 49, 950-963.
    • (2001) Oper. Res. , vol.49 , pp. 950-963
    • Nelson, B.L.1    Swann, J.2    Goldsman, D.3    Song, W.4
  • 31
    • 67649995820 scopus 로고    scopus 로고
    • Balanced explorative and exploitative search with estimation for simulation optimization
    • PRUDIUS, A. A., AND ANDRAD́OTTIR, S. 2009. Balanced explorative and exploitative search with estimation for simulation optimization. INFORMS J. Comput. 21, 193-208.
    • (2009) INFORMS J. Comput. , vol.21 , pp. 193-208
    • Prudius, A.A.1    Andrad́ottir, S.2
  • 33
    • 0000350399 scopus 로고    scopus 로고
    • Nested partitions method for stochastic optimization
    • SHI, L., AND ÓLAFSSON, S. 2000. Nested partitions method for stochastic optimization. Method. Comput. Appl. Probab. 2, 271-291.
    • (2000) Method. Comput. Appl. Probab. , vol.2 , pp. 271-291
    • Shi, L.1    Ólafsson, S.2
  • 34
    • 0020829377 scopus 로고
    • Identifying redundant constraints and implicit equalities in systems of linear constraints
    • TELGEN, J. 1983. Identifying redundant constraints and implicit equalities in systems of linear constraints. Manag. Sci. 29, 1209-1222.
    • (1983) Manag. Sci. , vol.29 , pp. 1209-1222
    • Telgen, J.1
  • 36
    • 0026868674 scopus 로고
    • Stochastic discrete optimization
    • YAN, D., AND MUKAI, H. 1992. Stochastic discrete optimization. SIAM J. Control Optimiz. 30, 594-612.
    • (1992) SIAM J. Control Optimiz. , vol.30 , pp. 594-612
    • Yan, D.1    Mukai, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.