메뉴 건너뛰기




Volumn 35, Issue 6, 2010, Pages 2305-2316

Comparison of compact reformer configurations for on-board fuel processing

Author keywords

Auxiliary power unit; Cascade reactor; Computational fluid dynamics; Methane combustion; Microchannel reactor; Naphtha steam reforming

Indexed keywords

AUXILIARY POWER UNITS; CASCADE REACTOR; CASCADE REACTORS; METHANE COMBUSTION; MICRO CHANNEL REACTORS; MICROCHANNEL REACTOR; STEAM REFORMING;

EID: 76749150874     PISSN: 03603199     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijhydene.2010.01.010     Document Type: Article
Times cited : (30)

References (46)
  • 1
    • 0027557675 scopus 로고
    • Process miniaturization - a route to total environmental acceptability
    • Benson R.S., and Ponton J.W. Process miniaturization - a route to total environmental acceptability. Chem Eng Res Des 71 (1993) 160-168
    • (1993) Chem Eng Res Des , vol.71 , pp. 160-168
    • Benson, R.S.1    Ponton, J.W.2
  • 2
    • 33847004568 scopus 로고    scopus 로고
    • Transport processes and exchange equipment
    • Advanced micro & nanosystems. Brand O., Fedder G.K., Hierold C., Korvink J.G., and Tabata O. (Eds), Wiley-VCH, Weinheim
    • Kockmann N. Transport processes and exchange equipment. In: Brand O., Fedder G.K., Hierold C., Korvink J.G., and Tabata O. (Eds). Advanced micro & nanosystems. Micro process engineering vol. 5 (2006), Wiley-VCH, Weinheim 71-113
    • (2006) Micro process engineering , vol.5 , pp. 71-113
    • Kockmann, N.1
  • 3
    • 2542429483 scopus 로고    scopus 로고
    • Numbering-up of micro devices: a first liquid-flow splitting unit
    • Schenk R., Hessel V., Hoffmann C., Kiss J., Löwe H., and Ziogas A. Numbering-up of micro devices: a first liquid-flow splitting unit. Chem Eng J 101 (2004) 421-429
    • (2004) Chem Eng J , vol.101 , pp. 421-429
    • Schenk, R.1    Hessel, V.2    Hoffmann, C.3    Kiss, J.4    Löwe, H.5    Ziogas, A.6
  • 5
    • 27744505574 scopus 로고    scopus 로고
    • Microstructured reactors for catalytic reactions
    • Kiwi-Minsker L., and Renken A. Microstructured reactors for catalytic reactions. Catal Today 110 (2005) 2-14
    • (2005) Catal Today , vol.110 , pp. 2-14
    • Kiwi-Minsker, L.1    Renken, A.2
  • 6
    • 1342285159 scopus 로고    scopus 로고
    • Micro-structured reactors for gas phase reactions
    • Kolb G., and Hessel V. Micro-structured reactors for gas phase reactions. Chem Eng J 98 (2004) 1-38
    • (2004) Chem Eng J , vol.98 , pp. 1-38
    • Kolb, G.1    Hessel, V.2
  • 7
    • 33750632698 scopus 로고    scopus 로고
    • From seconds to milliseconds to microseconds through tailored microchannel reactor design of a steam methane reformer
    • Tonkovich A.Y., Yang B., Perry S.T., Fitzgerald S.P., and Wang Y. From seconds to milliseconds to microseconds through tailored microchannel reactor design of a steam methane reformer. Catal Today 120 (2007) 21-29
    • (2007) Catal Today , vol.120 , pp. 21-29
    • Tonkovich, A.Y.1    Yang, B.2    Perry, S.T.3    Fitzgerald, S.P.4    Wang, Y.5
  • 8
    • 29544446519 scopus 로고    scopus 로고
    • Combining catalytic combustion and steam reforming in a novel multifunctional reactor for on-board hydrogen production from middle distillates
    • Petrachi G.A., Negro G., Specchia S., Saracco G., Maffettone P.L., and Specchia V. Combining catalytic combustion and steam reforming in a novel multifunctional reactor for on-board hydrogen production from middle distillates. Ind Eng Chem Res 44 (2005) 9422-9430
    • (2005) Ind Eng Chem Res , vol.44 , pp. 9422-9430
    • Petrachi, G.A.1    Negro, G.2    Specchia, S.3    Saracco, G.4    Maffettone, P.L.5    Specchia, V.6
  • 9
    • 71549155663 scopus 로고    scopus 로고
    • High vs. low temperature reforming for hydrogen production via microtechnology
    • Stefanidis G.D., and Vlachos D.G. High vs. low temperature reforming for hydrogen production via microtechnology. Chem Eng Sci 64 (2009) 4856-4865
    • (2009) Chem Eng Sci , vol.64 , pp. 4856-4865
    • Stefanidis, G.D.1    Vlachos, D.G.2
  • 11
    • 22744437659 scopus 로고    scopus 로고
    • Demonstration plant for distributed production of hydrogen from steam reforming of methane
    • Seris E.L.C., Abramowitz G., Johnston A.M., and Haynes B.S. Demonstration plant for distributed production of hydrogen from steam reforming of methane. Chem Eng Res Des 83 (2005) 619-625
    • (2005) Chem Eng Res Des , vol.83 , pp. 619-625
    • Seris, E.L.C.1    Abramowitz, G.2    Johnston, A.M.3    Haynes, B.S.4
  • 12
  • 13
    • 33947588040 scopus 로고    scopus 로고
    • High performance printed circuit heat exchanger
    • Tsuzuki N., Kato Y., and Ishiduka T. High performance printed circuit heat exchanger. Appl Therm Eng 27 (2007) 1702-1707
    • (2007) Appl Therm Eng , vol.27 , pp. 1702-1707
    • Tsuzuki, N.1    Kato, Y.2    Ishiduka, T.3
  • 14
    • 77956384920 scopus 로고    scopus 로고
    • Microreactor catalytic combustion for chemicals processing
    • 10.1016/j.cattod.2009.01.046
    • Avci A.K., Trimm D.L., and Karakaya M. Microreactor catalytic combustion for chemicals processing. Catal Today (2009) 10.1016/j.cattod.2009.01.046
    • (2009) Catal Today
    • Avci, A.K.1    Trimm, D.L.2    Karakaya, M.3
  • 15
    • 0037949159 scopus 로고    scopus 로고
    • Modeling and optimization of a novel membrane reformer for higher hydrocarbons
    • Chen Z., Ya Y., and Elnashaie S.S.E.H. Modeling and optimization of a novel membrane reformer for higher hydrocarbons. AIChE J 49 (2003) 1250-1265
    • (2003) AIChE J , vol.49 , pp. 1250-1265
    • Chen, Z.1    Ya, Y.2    Elnashaie, S.S.E.H.3
  • 16
    • 0020246542 scopus 로고
    • Evaluation of intrinsic steam reforming kinetic-parameters from rate measurements on full particle size
    • Tottrup P.B. Evaluation of intrinsic steam reforming kinetic-parameters from rate measurements on full particle size. Appl Catal 4 (1982) 377-389
    • (1982) Appl Catal , vol.4 , pp. 377-389
    • Tottrup, P.B.1
  • 17
    • 0001134713 scopus 로고    scopus 로고
    • The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen I. The kinetics of the catalytic oxidation of light hydrocarbons
    • Ma L., Trimm D.L., and Jiang C. The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen I. The kinetics of the catalytic oxidation of light hydrocarbons. Appl Catal A: Gen 138 (1996) 275-283
    • (1996) Appl Catal A: Gen , vol.138 , pp. 275-283
    • Ma, L.1    Trimm, D.L.2    Jiang, C.3
  • 18
    • 0034744414 scopus 로고    scopus 로고
    • A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles
    • Brown L.F. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. Int J Hydrogen Energy 26 (2001) 381-397
    • (2001) Int J Hydrogen Energy , vol.26 , pp. 381-397
    • Brown, L.F.1
  • 19
    • 2342467492 scopus 로고    scopus 로고
    • Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds
    • Semelsberger T.A., Brown L.F., Borup R.L., and Inbody M.A. Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds. Int J Hydrogen Energy 29 (2004) 1047-1064
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 1047-1064
    • Semelsberger, T.A.1    Brown, L.F.2    Borup, R.L.3    Inbody, M.A.4
  • 21
    • 56749177068 scopus 로고    scopus 로고
    • Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases
    • Hla S.S., Park D., Duffy G.J., Edwards J.H., Roberts D.G., Ilyushechkin A., et al. Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases. Chem Eng J 146 (2009) 148-154
    • (2009) Chem Eng J , vol.146 , pp. 148-154
    • Hla, S.S.1    Park, D.2    Duffy, G.J.3    Edwards, J.H.4    Roberts, D.G.5    Ilyushechkin, A.6
  • 22
    • 0242694564 scopus 로고    scopus 로고
    • Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen
    • Choi Y., and Stenger H.G. Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J Power Sources 124 (2003) 432-439
    • (2003) J Power Sources , vol.124 , pp. 432-439
    • Choi, Y.1    Stenger, H.G.2
  • 23
    • 0034744415 scopus 로고    scopus 로고
    • Hydrogen from hydrocarbon fuels for fuel cells
    • Ahmed S., and Krumpelt M. Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydrogen Energy 26 (2001) 291-301
    • (2001) Int J Hydrogen Energy , vol.26 , pp. 291-301
    • Ahmed, S.1    Krumpelt, M.2
  • 24
    • 0034917241 scopus 로고    scopus 로고
    • On-board fuel conversion for hydrogen-fuel-cell-driven vehicles
    • Trimm D.L., and Onsan Z.I. On-board fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev Sci Eng 43 (2001) 31-84
    • (2001) Catal Rev Sci Eng , vol.43 , pp. 31-84
    • Trimm, D.L.1    Onsan, Z.I.2
  • 25
    • 0003101582 scopus 로고    scopus 로고
    • HotSpot™ fuel processor: advancing the case for fuel cell powered cars
    • Golunski S. HotSpot™ fuel processor: advancing the case for fuel cell powered cars. Platinum Metals Rev 42 (1998) 2-7
    • (1998) Platinum Metals Rev , vol.42 , pp. 2-7
    • Golunski, S.1
  • 26
    • 0036882635 scopus 로고    scopus 로고
    • Fuel processing for low-temperature and high-temperature fuel cells - challenges, and opportunities for sustainable development in the 21st century
    • Song C.S. Fuel processing for low-temperature and high-temperature fuel cells - challenges, and opportunities for sustainable development in the 21st century. Catal Today 77 (2002) 17-49
    • (2002) Catal Today , vol.77 , pp. 17-49
    • Song, C.S.1
  • 28
    • 71749084127 scopus 로고    scopus 로고
    • Simulation of on-board fuel conversion in catalytic microchannel reactor-heat exchanger systems
    • Karakaya M., and Avci A.K. Simulation of on-board fuel conversion in catalytic microchannel reactor-heat exchanger systems. Top Catal 52 (2009) 2112-2116
    • (2009) Top Catal , vol.52 , pp. 2112-2116
    • Karakaya, M.1    Avci, A.K.2
  • 29
    • 0037191688 scopus 로고    scopus 로고
    • Quantitative investigation of catalytic natural gas conversion for hydrogen fuel cell applications
    • Avci A.K., Trimm D.L., and Onsan Z.I. Quantitative investigation of catalytic natural gas conversion for hydrogen fuel cell applications. Chem Eng J 90 (2002) 77-87
    • (2002) Chem Eng J , vol.90 , pp. 77-87
    • Avci, A.K.1    Trimm, D.L.2    Onsan, Z.I.3
  • 30
    • 0037130610 scopus 로고    scopus 로고
    • Fuel processing for PEM fuel cells: transport and kinetic issues of system design
    • Zalc J.M., and Löffler D.G. Fuel processing for PEM fuel cells: transport and kinetic issues of system design. J Power Sources 111 (2002) 58-64
    • (2002) J Power Sources , vol.111 , pp. 58-64
    • Zalc, J.M.1    Löffler, D.G.2
  • 31
    • 53449099882 scopus 로고    scopus 로고
    • Design of a methane processing system producing high-purity hydrogen
    • Tan O., Masalaci E., Onsan Z.I., and Avci A.K. Design of a methane processing system producing high-purity hydrogen. Int J Hydrogen Energy 33 (2008) 5516-5526
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 5516-5526
    • Tan, O.1    Masalaci, E.2    Onsan, Z.I.3    Avci, A.K.4
  • 32
    • 0035938683 scopus 로고    scopus 로고
    • Modelling of a catalytic plate reactor for dehydrogenation-combustion coupling
    • Zanfir M., and Gavriilidis A. Modelling of a catalytic plate reactor for dehydrogenation-combustion coupling. Chem Eng Sci 56 (2001) 2671-2683
    • (2001) Chem Eng Sci , vol.56 , pp. 2671-2683
    • Zanfir, M.1    Gavriilidis, A.2
  • 33
    • 0141684619 scopus 로고    scopus 로고
    • Catalytic combustion assisted methane steam reforming in a catalytic plate reactor
    • Zanfir M., and Gavriilidis A. Catalytic combustion assisted methane steam reforming in a catalytic plate reactor. Chem Eng Sci 58 (2003) 3947-3960
    • (2003) Chem Eng Sci , vol.58 , pp. 3947-3960
    • Zanfir, M.1    Gavriilidis, A.2
  • 34
    • 1542428873 scopus 로고    scopus 로고
    • Influence of flow arrangement in catalytic plate reactors for methane steam reforming
    • Zanfir M., and Gavriilidis A. Influence of flow arrangement in catalytic plate reactors for methane steam reforming. Chem Eng Res Des 82 (2004) 252-258
    • (2004) Chem Eng Res Des , vol.82 , pp. 252-258
    • Zanfir, M.1    Gavriilidis, A.2
  • 35
    • 27744514218 scopus 로고    scopus 로고
    • Heterogeneous reactor model for steam reforming of methane in a microchannel reactor with microstructured catalysts
    • Cao C., Wang Y., and Rozmiarek R.T. Heterogeneous reactor model for steam reforming of methane in a microchannel reactor with microstructured catalysts. Catal Today 110 (2005) 92-97
    • (2005) Catal Today , vol.110 , pp. 92-97
    • Cao, C.1    Wang, Y.2    Rozmiarek, R.T.3
  • 36
    • 22244438850 scopus 로고    scopus 로고
    • Effect of flow configuration on the operation of coupled combustor/reformer microdevices for hydrogen production
    • Deshmukh S.R., and Vlachos D.G. Effect of flow configuration on the operation of coupled combustor/reformer microdevices for hydrogen production. Chem Eng Sci 60 (2005) 5718-5728
    • (2005) Chem Eng Sci , vol.60 , pp. 5718-5728
    • Deshmukh, S.R.1    Vlachos, D.G.2
  • 37
    • 50049110150 scopus 로고    scopus 로고
    • Millisecond methane steam reforming via process and catalyst intensification
    • Stefanidis G.D., and Vlachos D.G. Millisecond methane steam reforming via process and catalyst intensification. Chem Eng Technol 31 (2008) 1201-1209
    • (2008) Chem Eng Technol , vol.31 , pp. 1201-1209
    • Stefanidis, G.D.1    Vlachos, D.G.2
  • 38
    • 0242380860 scopus 로고    scopus 로고
    • Strategies for size reduction of microreactors by heat transfer enhancement effects
    • Hardt S., Ehrfeld W., Hessel V., and Vanden Bussche K.M. Strategies for size reduction of microreactors by heat transfer enhancement effects. Chem Eng Commun 190 (2003) 540-559
    • (2003) Chem Eng Commun , vol.190 , pp. 540-559
    • Hardt, S.1    Ehrfeld, W.2    Hessel, V.3    Vanden Bussche, K.M.4
  • 39
    • 0034628694 scopus 로고    scopus 로고
    • Modelling steady state and ignition during catalytic methane oxidation in a monolith reactor
    • Veser G., and Frauhammer J. Modelling steady state and ignition during catalytic methane oxidation in a monolith reactor. Chem Eng Sci 55 (2000) 2271-2286
    • (2000) Chem Eng Sci , vol.55 , pp. 2271-2286
    • Veser, G.1    Frauhammer, J.2
  • 40
    • 0035860399 scopus 로고    scopus 로고
    • Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells
    • de Smet C.R.H., de Croon M.H.J.M., Berger R.J., Marin G.B., and Schouten J.C. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells. Chem Eng Sci 56 (2001) 4849-4861
    • (2001) Chem Eng Sci , vol.56 , pp. 4849-4861
    • de Smet, C.R.H.1    de Croon, M.H.J.M.2    Berger, R.J.3    Marin, G.B.4    Schouten, J.C.5
  • 42
    • 0024303638 scopus 로고
    • Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics
    • Xu J., and Froment G.F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35 (1989) 88-96
    • (1989) AIChE J , vol.35 , pp. 88-96
    • Xu, J.1    Froment, G.F.2
  • 43
    • 0021158095 scopus 로고
    • Catalytic steam reforming
    • Anderson J.R., and Boudart M. (Eds), Springer, Berlin
    • Rostrup-Nielsen J.R. Catalytic steam reforming. In: Anderson J.R., and Boudart M. (Eds). Catalysis, science and technology vol. 5 (1984), Springer, Berlin 1-117
    • (1984) Catalysis, science and technology , vol.5 , pp. 1-117
    • Rostrup-Nielsen, J.R.1
  • 45
    • 0037092602 scopus 로고    scopus 로고
    • Efficient reactor concepts for coupling of endothermic and exothermic reactions
    • Kolios G., Frauhammer J., and Eigenberger G. Efficient reactor concepts for coupling of endothermic and exothermic reactions. Chem Eng Sci 57 (2002) 1505-1510
    • (2002) Chem Eng Sci , vol.57 , pp. 1505-1510
    • Kolios, G.1    Frauhammer, J.2    Eigenberger, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.