-
2
-
-
0004271137
-
-
edited by S. R. Beissinger and D. R. McCullough (University of Chicago Press, Chicago
-
Population Viability Analysis, edited by, S. R. Beissinger, and, D. R. McCullough, (University of Chicago Press, Chicago, 2002).
-
(2002)
Population Viability Analysis
-
-
-
5
-
-
38949182410
-
-
10.1103/PhysRevLett.100.058105
-
M. Assaf and B. Meerson, Phys. Rev. Lett. 100, 058105 (2008). 10.1103/PhysRevLett.100.058105
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 058105
-
-
Assaf, M.1
Meerson, B.2
-
8
-
-
76749121189
-
-
We will assume that the stochastic population does not exhibit an unlimited growth (escape to infinite population size), see Ref., and n=0 is the only absorbing state.
-
We will assume that the stochastic population does not exhibit an unlimited growth (escape to infinite population size), see Ref., and n=0 is the only absorbing state.
-
-
-
-
9
-
-
33750191985
-
-
10.1103/PhysRevE.74.041115
-
M. Assaf and B. Meerson, Phys. Rev. E 74, 041115 (2006). 10.1103/PhysRevE.74.041115
-
(2006)
Phys. Rev. e
, vol.74
, pp. 041115
-
-
Assaf, M.1
Meerson, B.2
-
10
-
-
33751110243
-
-
10.1103/PhysRevLett.97.200602
-
M. Assaf and B. Meerson, Phys. Rev. Lett. 97, 200602 (2006). 10.1103/PhysRevLett.97.200602
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 200602
-
-
Assaf, M.1
Meerson, B.2
-
13
-
-
36449004539
-
-
10.1063/1.467139
-
M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, J. Chem. Phys. 100, 5735 (1994). 10.1063/1.467139
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 5735
-
-
Dykman, M.I.1
Mori, E.2
Ross, J.3
Hunt, P.M.4
-
14
-
-
41349122474
-
-
10.1103/PhysRevE.70.041106
-
V. Elgart and A. Kamenev, Phys. Rev. E 70, 041106 (2004). 10.1103/PhysRevE.70.041106
-
(2004)
Phys. Rev. e
, vol.70
, pp. 041106
-
-
Elgart, V.1
Kamenev, A.2
-
15
-
-
33749458189
-
-
10.1103/PhysRevE.74.041101
-
V. Elgart and A. Kamenev, Phys. Rev. E 74, 041101 (2006). 10.1103/PhysRevE.74.041101
-
(2006)
Phys. Rev. e
, vol.74
, pp. 041101
-
-
Elgart, V.1
Kamenev, A.2
-
20
-
-
34047145329
-
-
10.1103/PhysRevE.75.031122
-
M. Assaf and B. Meerson, Phys. Rev. E 75, 031122 (2007). 10.1103/PhysRevE.75.031122
-
(2007)
Phys. Rev. e
, vol.75
, pp. 031122
-
-
Assaf, M.1
Meerson, B.2
-
22
-
-
57949097644
-
-
10.1103/PhysRevE.78.060103
-
B. Meerson and P. V. Sasorov, Phys. Rev. E 78, 060103 (R) (2008). 10.1103/PhysRevE.78.060103
-
(2008)
Phys. Rev. e
, vol.78
, pp. 060103
-
-
Meerson, B.1
Sasorov, P.V.2
-
23
-
-
66349126534
-
-
10.1103/PhysRevE.79.041149
-
C. Escudero and A. Kamenev, Phys. Rev. E 79, 041149 (2009). 10.1103/PhysRevE.79.041149
-
(2009)
Phys. Rev. e
, vol.79
, pp. 041149
-
-
Escudero, C.1
Kamenev, A.2
-
24
-
-
76749128259
-
-
At nontrivial fixed points of the rate equation, q= qi = ni /N>0, the two real roots of the equation H (q,p) =0 merge at p=0.
-
At nontrivial fixed points of the rate equation, q= qi = ni /N>0, the two real roots of the equation H (q,p) =0 merge at p=0.
-
-
-
-
25
-
-
76749115024
-
-
If S″ (0) =0, then it is more convenient to use Eq. .
-
If S″ (0) =0, then it is more convenient to use Eq..
-
-
-
-
27
-
-
76749133896
-
-
We remind the reader that, in order to obtain Eq., we rescaled the reaction rates and time by the linear decay rate constant w -1 ′ (0) =α. To express the MTE in physical units one needs to put the factor α back.
-
We remind the reader that, in order to obtain Eq., we rescaled the reaction rates and time by the linear decay rate constant w -1 ′ (0) =α. To express the MTE in physical units one needs to put the factor α back.
-
-
-
-
29
-
-
0035822368
-
-
10.1006/jtbi.2001.2328
-
J. Nåsell, J. Theor. Biol. 211, 11 (2001). 10.1006/jtbi.2001.2328
-
(2001)
J. Theor. Biol.
, vol.211
, pp. 11
-
-
Nåsell, J.1
-
30
-
-
0035528749
-
-
10.1239/jap/1011994180
-
O. Ovaskainen, J. Appl. Prob. 38, 898 (2001). 10.1239/jap/1011994180
-
(2001)
J. Appl. Prob.
, vol.38
, pp. 898
-
-
Ovaskainen, O.1
-
31
-
-
76749139717
-
-
In Refs. the parameter R0 was defined as λ (N-1) /μ. Therefore, their result for the MTE looks slightly different, but it is actually identical to [Eq. in the leading and subleading orders of N.
-
In Refs. the parameter R0 was defined as λ (N-1) /μ. Therefore, their result for the MTE looks slightly different, but it is actually identical to [Eq. in the leading and subleading orders of N.
-
-
-
-
32
-
-
0012723374
-
-
10.1016/0378-4371(80)90010-2
-
M. I. Dykman and M. A. Krivoglaz, Physica A 104, 480 (1980). 10.1016/0378-4371(80)90010-2
-
(1980)
Physica A
, vol.104
, pp. 480
-
-
Dykman, M.I.1
Krivoglaz, M.A.2
-
33
-
-
76749140209
-
-
The distance to bifurcation δ1 is defined in Refs. differently than in the present work. Their parameter δ1 is related to our parameter δ as δ1 = δ2, so the entropy barriers in Refs. scale with δ1 as δ1 3/2.
-
The distance to bifurcation δ1 is defined in Refs. differently than in the present work. Their parameter δ1 is related to our parameter δ as δ1 = δ2, so the entropy barriers in Refs. scale with δ1 as δ1 3/2.
-
-
-
|