메뉴 건너뛰기




Volumn 43, Issue 6, 2010, Pages 2315-2329

Cooperative clustering

Author keywords

Cooperative clustering; Cooperative contingency graph; Similarity histogram

Indexed keywords

CLUSTERING APPROACH; CLUSTERING MODEL; CLUSTERINGS; COOPERATIVE MODEL; DATA CLUSTERING; DATA SETS; GRAPH SIMILARITY; MACHINE-LEARNING; MERGING PROCESS; MULTIPLE CLUSTERINGS; OPTIMUM SOLUTION; SUB-CLUSTERS; TEXT DOCUMENT;

EID: 76749131516     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.12.018     Document Type: Article
Times cited : (62)

References (41)
  • 2
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R. Survey of clustering algorithms. IEEE Transactions on Neural Networks 16 3 (2005) 645-678
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1
  • 5
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • Hartigan J., and Wong M. A k-means clustering algorithm. Applied Statistics 28 (1979) 100-108
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.1    Wong, M.2
  • 8
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • Boley D. Principal direction divisive partitioning. Data Mining and Knowledge Discovery 2 4 (1998) 325-344
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.1
  • 10
    • 67649406022 scopus 로고    scopus 로고
    • Enhanced bisecting k-means clustering using intermediate cooperation
    • Kashef R., and Kamel M. Enhanced bisecting k-means clustering using intermediate cooperation. Pattern Recognition 42 11 (2009) 2557-2569
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2557-2569
    • Kashef, R.1    Kamel, M.2
  • 11
    • 0037869164 scopus 로고    scopus 로고
    • Criterion functions for document clustering: Experiments and analysis
    • Technical Report
    • Y. Zhao, G. Karypis, Criterion functions for document clustering: experiments and analysis, Technical Report, 2002.
    • (2002)
    • Zhao, Y.1    Karypis, G.2
  • 13
    • 68949146876 scopus 로고    scopus 로고
    • Incremental spectral clustering by efficiently updating the eigen-system
    • Ning H., Xu W., Chi Y., Gong Y., and Huang T. Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition 43 1 (2010) 113-127
    • (2010) Pattern Recognition , vol.43 , Issue.1 , pp. 113-127
    • Ning, H.1    Xu, W.2    Chi, Y.3    Gong, Y.4    Huang, T.5
  • 14
    • 67649403091 scopus 로고    scopus 로고
    • Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation
    • Fan J., Han M., and Wang J. Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation. Pattern Recognition 42 11 (2009) 2527-2540
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2527-2540
    • Fan, J.1    Han, M.2    Wang, J.3
  • 15
    • 67649407363 scopus 로고    scopus 로고
    • A fast k-means clustering algorithm using cluster center displacement
    • Lai J., Huang T., and Liaw Y. A fast k-means clustering algorithm using cluster center displacement. Pattern Recognition 42 11 (2009) 2551-2556
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2551-2556
    • Lai, J.1    Huang, T.2    Liaw, Y.3
  • 16
    • 9144254114 scopus 로고    scopus 로고
    • Robust growing neural gas algorithm with application in cluster analysis
    • Qin A., and Suganthan P. Robust growing neural gas algorithm with application in cluster analysis. Neural Networks 17 8-9 (2004) 1135-1148
    • (2004) Neural Networks , vol.17 , Issue.8-9 , pp. 1135-1148
    • Qin, A.1    Suganthan, P.2
  • 17
    • 67349264872 scopus 로고    scopus 로고
    • Clustering with r-regular graphs
    • Kim J., and Choi S. Clustering with r-regular graphs. Pattern Recognition 42 9 (2009) 2020-2028
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 2020-2028
    • Kim, J.1    Choi, S.2
  • 18
    • 18544389845 scopus 로고    scopus 로고
    • Enhanced neural gas network for prototype-based clustering
    • Qin A., and Suganthan P. Enhanced neural gas network for prototype-based clustering. Pattern Recognition 38 8 (2005) 1275-1288
    • (2005) Pattern Recognition , vol.38 , Issue.8 , pp. 1275-1288
    • Qin, A.1    Suganthan, P.2
  • 19
    • 0036931833 scopus 로고    scopus 로고
    • Cluster ensembles-knowledge reuse framework for combining partitionings
    • AAAI/MIT Press
    • A. Strehl, J. Ghosh, Cluster ensembles-knowledge reuse framework for combining partitionings, in: Conference on Artificial Intelligence, AAAI/MIT Press, 2002, pp. 93-98.
    • (2002) Conference on Artificial Intelligence , pp. 93-98
    • Strehl, A.1    Ghosh, J.2
  • 21
    • 42449100235 scopus 로고    scopus 로고
    • Efficient ensemble methods for document clustering
    • Technical Report, Computer Science Department, Trinity College Dublin
    • D. Greene, P. Cunningham, Efficient ensemble methods for document clustering, Technical Report, Computer Science Department, Trinity College Dublin, 2006.
    • (2006)
    • Greene, D.1    Cunningham, P.2
  • 23
    • 14644401723 scopus 로고    scopus 로고
    • Combining partitional and hierarchical algorithms for robust and efficient data clustering with cohesion self-merging
    • Lin C., and Chen M. Combining partitional and hierarchical algorithms for robust and efficient data clustering with cohesion self-merging. IEEE Transactions on Knowledge and Data Engineering 17 2 (2005) 145-159
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.2 , pp. 145-159
    • Lin, C.1    Chen, M.2
  • 25
    • 23944477313 scopus 로고    scopus 로고
    • A hybrid parallel web document clustering algorithm and its performance study
    • Xu S., and Zhang J. A hybrid parallel web document clustering algorithm and its performance study. Journal of Supercomputing 30 2 (2004) 117-131
    • (2004) Journal of Supercomputing , vol.30 , Issue.2 , pp. 117-131
    • Xu, S.1    Zhang, J.2
  • 26
    • 0024475950 scopus 로고
    • Multidimensional data clustering utilizing hybrid search strategies
    • Ismail M., and Kamel M. Multidimensional data clustering utilizing hybrid search strategies. Pattern Recognition 22 (1989) 75-89
    • (1989) Pattern Recognition , vol.22 , pp. 75-89
    • Ismail, M.1    Kamel, M.2
  • 28
    • 76749169660 scopus 로고    scopus 로고
    • R. Ng, J. Han, Efficient and effective clustering methods for spatial data mining, in: VLDB, 1994, pp. 144-155.
    • R. Ng, J. Han, Efficient and effective clustering methods for spatial data mining, in: VLDB, 1994, pp. 144-155.
  • 31
    • 67649600665 scopus 로고    scopus 로고
    • Robust cluster validity indexes
    • Wu K., Yang M., and Hsieh J. Robust cluster validity indexes. Pattern Recognition 42 11 (2009) 2541-2550
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2541-2550
    • Wu, K.1    Yang, M.2    Hsieh, J.3
  • 35
    • 76749168282 scopus 로고    scopus 로고
    • 〈http://www.sciencemag.org/feature/data/984559.sh〉
  • 37
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation
    • Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., Lander E.S., and Golub T. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. PNAS 96 (1999) 2907-2912
    • (1999) PNAS , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3    Zhu, Q.4    Kitareewan, S.5    Dmitrovsky, E.6    Lander, E.S.7    Golub, T.8
  • 39
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • Salton G., Wong A., and Yang C. A vector space model for automatic indexing. Communications of the ACM 18 11 (1975) 613-620
    • (1975) Communications of the ACM , vol.18 , Issue.11 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.