-
1
-
-
33645521989
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.136801
-
P. Calabrese and J. Cardy, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.136801 96, 136801 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 136801
-
-
Calabrese, P.1
Cardy, J.2
-
2
-
-
33749990876
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.97.156403
-
M. A. Cazalilla, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 97.156403 97, 156403 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 156403
-
-
Cazalilla, M.A.1
-
3
-
-
34547354363
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.210405
-
S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.210405 98, 210405 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 210405
-
-
Manmana, S.R.1
Wessel, S.2
Noack, R.M.3
Muramatsu, A.4
-
4
-
-
52149115101
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.120603
-
A. Silva, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101. 120603 101, 120603 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 120603
-
-
Silva, A.1
-
6
-
-
34548815389
-
-
NATUAS 0028-0836 10.1038/nature06149
-
S. Hoffenberth, I. Lesanovsky, B. Fisher, T. Schumm, and J. Schmiedmayer, Nature (London) NATUAS 0028-0836 10.1038/nature06149 449, 324 (2007).
-
(2007)
Nature (London)
, vol.449
, pp. 324
-
-
Hoffenberth, S.1
Lesanovsky, I.2
Fisher, B.3
Schumm, T.4
Schmiedmayer, J.5
-
7
-
-
4244156556
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.80.1373
-
H. Tasaki, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80.1373 80, 1373 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 1373
-
-
Tasaki, H.1
-
8
-
-
33144456594
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.050403
-
S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.050403 96, 050403 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 050403
-
-
Goldstein, S.1
Lebowitz, J.L.2
Tumulka, R.3
Zanghì, N.4
-
9
-
-
35348965671
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.160404
-
P. Reimann, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99. 160404 99, 160404 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 160404
-
-
Reimann, P.1
-
10
-
-
56249118347
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.190403
-
P. Reimann, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101. 190403 101, 190403 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 190403
-
-
Reimann, P.1
-
12
-
-
67650902389
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.79.061103
-
N. Linden, S. Popescu, A. J. Short, and A. Winter, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.79.061103 79, 061103 (2009).
-
(2009)
Phys. Rev. e
, vol.79
, pp. 061103
-
-
Linden, N.1
Popescu, S.2
Short, A.J.3
Winter, A.4
-
13
-
-
36049053690
-
-
PHRVAO 0031-899X 10.1103/PhysRev.182.479
-
K. D. Schotte and U. Schotte, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.182.479 182, 479 (1969).
-
(1969)
Phys. Rev.
, vol.182
, pp. 479
-
-
Schotte, K.D.1
Schotte, U.2
-
14
-
-
4243314981
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.80.1808
-
T. Prosen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80.1808 80, 1808 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 1808
-
-
Prosen, T.1
-
15
-
-
0035911708
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.86.2490
-
R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.2490 86, 2490 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2490
-
-
Jalabert, R.A.1
Pastawski, H.M.2
-
16
-
-
33645813835
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.140604
-
H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.140604 96, 140604 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 140604
-
-
Quan, H.T.1
Song, Z.2
Liu, X.F.3
Zanardi, P.4
Sun, C.P.5
-
17
-
-
34547347607
-
-
PRLTAO 1751-8113 10.1088/1751-8113/40/28/S12
-
D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, and R. Fazio, J. Phys. A: Math. Theor. PRLTAO 1751-8113 10.1088/1751-8113/40/28/S12 40, 8033 (2007).
-
(2007)
J. Phys. A: Math. Theor.
, vol.40
, pp. 8033
-
-
Rossini, D.1
Calarco, T.2
Giovannetti, V.3
Montangero, S.4
Fazio, R.5
-
18
-
-
33947614795
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.032333
-
D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, and R. Fazio, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.032333 75, 032333 (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 032333
-
-
Rossini, D.1
Calarco, T.2
Giovannetti, V.3
Montangero, S.4
Fazio, R.5
-
19
-
-
33947276703
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.032109
-
P. Zanardi, H. T. Quan, X. Wang, and C. P. Sun, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.032109 75, 032109 (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 032109
-
-
Zanardi, P.1
Quan, H.T.2
Wang, X.3
Sun, C.P.4
-
20
-
-
4243754128
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.78.2690
-
C. Jarzynski, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.78. 2690 78, 2690 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2690
-
-
Jarzynski, C.1
-
21
-
-
76749165641
-
-
cond-mat/0007360.
-
J. Kurchan, e-print arXiv: cond-mat/0007360.
-
-
-
Kurchan, J.1
-
22
-
-
49749141477
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.063001
-
M. Cramer, A. Flesch, I. P. McCulloch, U. Schollwöck, and J. Eisert, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101.063001 101, 063001 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 063001
-
-
Cramer, M.1
Flesch, A.2
McCulloch, I.P.3
Schollwöck, U.4
Eisert, J.5
-
23
-
-
76749126456
-
-
Expanding up to second order in δh around h(2), c(ω) can be well approximated by c(ω)=18h22ω4(ω2-Em2)(EM2-ω2) δh2+O(δh4). This function has a flex at ωflex 3.61-h(2). Therefore the width of the peak is small compared to the bandwith roughly when 1-h(2) 10-1.
-
Expanding up to second order in δh around h(2), c(ω) can be well approximated by c(ω)=18h22ω4(ω2-Em2)(EM2-ω2) δh2+O(δh4). This function has a flex at ωflex 3.61-h(2). Therefore the width of the peak is small compared to the bandwith roughly when 1-h(2) 10-1.
-
-
-
-
24
-
-
76749124723
-
-
When h(2) is close to criticality, say h(2)=1+Δh, the band is approximately Λk(2)(1+Δh/2)sin(k/2). The number of frequencies which fall in the peak is given by the n satisfying Λkn(2)=ωflex. At first order we obtain n=O(LΔh), and so to have few frequencies in the peak we must have Lh(2)-1 1.
-
When h(2) is close to criticality, say h(2)=1+Δh, the band is approximately Λk(2)(1+Δh/2)sin(k/2). The number of frequencies which fall in the peak is given by the n satisfying Λkn(2)=ωflex. At first order we obtain n=O(LΔh), and so to have few frequencies in the peak we must have Lh(2)-1 1.
-
-
-
-
25
-
-
0141564662
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.067902
-
D. K. L. Oi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91. 067902 91, 067902 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 067902
-
-
Oi, D.K.L.1
-
26
-
-
34548454416
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.095701
-
L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.095701 99, 095701 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 095701
-
-
Campos Venuti, L.1
Zanardi, P.2
-
27
-
-
85104369179
-
-
Academic Press, London
-
V. Privman, P. Hohenberg, and A. Aharony, Phase Transition and Critical Phenomena (Academic Press, London, 1989), Vol. 14.
-
(1989)
Phase Transition and Critical Phenomena
-
-
Privman, V.1
Hohenberg, P.2
Aharony, A.3
-
28
-
-
0035251554
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.86.1007
-
V. Aji and N. Goldenfeld, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.1007 86, 1007 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 1007
-
-
Aji, V.1
Goldenfeld, N.2
-
29
-
-
42549111681
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.100.165706
-
A. Lamacraft and P. Fendley, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.165706 100, 165706 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 165706
-
-
Lamacraft, A.1
Fendley, P.2
-
30
-
-
76749127420
-
-
More precisely, assume the lattice is bipartite and the quasimomenta satisfy some quantization in order to be roughly equally spaced: k=2πn/L. Then k(-1)kΛk is the difference between two multidimensional Riemann sums. If Λk is analytic, both these sums converge exponentially fast to their integral, and so their difference is exponentially small in L.
-
More precisely, assume the lattice is bipartite and the quasimomenta satisfy some quantization in order to be roughly equally spaced: k=2πn/L. Then k(-1)kΛk is the difference between two multidimensional Riemann sums. If Λk is analytic, both these sums converge exponentially fast to their integral, and so their difference is exponentially small in L.
-
-
-
-
31
-
-
0001581188
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.2.1075
-
E. Barouch, B. M. McCoy, and M. Dresden, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.1075 2, 1075 (1970).
-
(1970)
Phys. Rev. A
, vol.2
, pp. 1075
-
-
Barouch, E.1
McCoy, B.M.2
Dresden, M.3
-
32
-
-
76749170173
-
-
Here below we sketch why this is so. Let us suppose that ρ∞=limt→∞Ut(ρ0). Obviously ρ∞ is a fixed point for Ut, i.e., Ut(ρ∞)=Ut(limu→∞Uu(ρ0))= limu→∞Ut+u(ρ0)=limu→∞Uu(ρ0)=ρ∞. Using unitary invariance of the trace norm it follows that ∥Ut(ρ0)-ρ 1=∥Ut(ρ0-ρ∞)∥1=∥ρ0-ρ 1 and therefore limt→ ∥Ut(ρ0)-ρ 1=0 implies ρ0=ρ∞.
-
Here below we sketch why this is so. Let us suppose that ρ∞=limt→∞Ut(ρ0). Obviously ρ∞ is a fixed point for Ut, i.e., Ut(ρ∞)=Ut(limu→∞Uu(ρ0))= limu→∞Ut+u(ρ0)=limu→∞Uu(ρ0)=ρ∞. Using unitary invariance of the trace norm it follows that ∥Ut(ρ0)-ρ1= ∥Ut(ρ0-ρ∞)∥1=∥ρ0-ρ1 and therefore limt→Ut(ρ0)-ρ1=0 implies ρ0=ρ∞.
-
-
-
-
33
-
-
76749163157
-
-
Notice that in the infinite-dimensional case discussed above Eq. (1) implies P(α)=δ(α-A∞). Indeed from Eq. (1) it follows for any continuous f that f[A(t)]̄=f(A∞). Whence P(α)= δ[α-A(t)]̄=1/2π∫eiλαe-iλA(t)̄= 1/2π∫eiλαe-iλA(t)̄=1/2π∫eiλα e-iλA∞=δ(α-A∞).
-
Notice that in the infinite-dimensional case discussed above Eq. (1) implies P(α)=δ(α-A∞). Indeed from Eq. (1) it follows for any continuous f that f[A(t)]̄=f(A∞). Whence P(α)= δ[α-A(t)]̄=1/2π∫eiλαe-iλA(t)̄= 1/2π∫eiλαe-iλA(t)̄=1/2π∫eiλα e-iλA∞=δ(α-A∞).
-
-
-
-
34
-
-
76749152675
-
-
Ln(t)=ρψn,P(n)(ρψn)+ρψn,e-itH~(n)(ρψn) where H~(n)=(-P(n))H(n)(-P(n)). The time average of the second term is ρψn,FTn(ρψn)/T where FTn=(-iH~(n))-1[e-iTH~(n)-]. Since FTn is a bounded operator its expectation value divided by T goes to zero when T→∞.
-
Ln(t)=ρψn,P(n)(ρψn)+ρψn,e-itH~(n)(ρψn) where H~(n)=(-P(n))H(n)(-P(n)). The time average of the second term is ρψn,FTn(ρψn)/T where FTn=(-iH~(n))-1[e-iTH~(n)-]. Since FTn is a bounded operator its expectation value divided by T goes to zero when T→∞.
-
-
-
-
35
-
-
76749084171
-
-
In (ii) one has to measure H(n):=i=1n(i-1)H-(n-i) in ρψn.
-
In (ii) one has to measure H(n):=i=1n(i-1)H-(n-i) in ρψn.
-
-
-
-
36
-
-
76749151732
-
-
A more precise approximation valid also in region where δh is large is given by L(t)=Πk>0(1+c0k+Xk(t))L̄(1+k>0(1+c0k)-1Xk(t)). The two expressions coincide when δh is small.
-
A more precise approximation valid also in region where δh is large is given by L(t)=Πk>0(1+c0k+Xk(t))L̄(1+k>0(1+c0k)-1Xk(t)). The two expressions coincide when δh is small.
-
-
-
-
37
-
-
76749153257
-
-
This is precisely Eq. (5.6) of [31] in the zero temperature limit.
-
This is precisely Eq. (5.6) of [31] in the zero temperature limit.
-
-
-
|