메뉴 건너뛰기




Volumn 81, Issue 2, 2010, Pages

Unitary equilibrations: Probability distribution of the Loschmidt echo

Author keywords

[No Author keywords available]

Indexed keywords

CLOSED QUANTUM SYSTEM; EQUILIBRIUM STATE; GAUSSIANS; INITIAL STATE; LARGE SYSTEM SIZE; LOSCHMIDT ECHOES; PURE STATE;

EID: 76749093169     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.81.022113     Document Type: Article
Times cited : (125)

References (37)
  • 1
    • 33645521989 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.96.136801
    • P. Calabrese and J. Cardy, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.136801 96, 136801 (2006).
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 136801
    • Calabrese, P.1    Cardy, J.2
  • 2
    • 33749990876 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.97.156403
    • M. A. Cazalilla, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 97.156403 97, 156403 (2006).
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 156403
    • Cazalilla, M.A.1
  • 4
    • 52149115101 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.101.120603
    • A. Silva, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101. 120603 101, 120603 (2008).
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 120603
    • Silva, A.1
  • 7
    • 4244156556 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.80.1373
    • H. Tasaki, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80.1373 80, 1373 (1998).
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 1373
    • Tasaki, H.1
  • 9
    • 35348965671 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.99.160404
    • P. Reimann, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99. 160404 99, 160404 (2007).
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 160404
    • Reimann, P.1
  • 10
    • 56249118347 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.101.190403
    • P. Reimann, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101. 190403 101, 190403 (2008).
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 190403
    • Reimann, P.1
  • 11
    • 33750614339 scopus 로고    scopus 로고
    • PRLTAO 1745-2473 10.1038/nphys444
    • S. Popescu, A. J. Short, and A. Winter, Nat. Phys. PRLTAO 1745-2473 10.1038/nphys444 2, 754 (2006).
    • (2006) Nat. Phys. , vol.2 , pp. 754
    • Popescu, S.1    Short, A.J.2    Winter, A.3
  • 12
  • 13
    • 36049053690 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.182.479
    • K. D. Schotte and U. Schotte, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.182.479 182, 479 (1969).
    • (1969) Phys. Rev. , vol.182 , pp. 479
    • Schotte, K.D.1    Schotte, U.2
  • 14
    • 4243314981 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.80.1808
    • T. Prosen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80.1808 80, 1808 (1998).
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 1808
    • Prosen, T.1
  • 15
    • 0035911708 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.86.2490
    • R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.2490 86, 2490 (2001).
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 2490
    • Jalabert, R.A.1    Pastawski, H.M.2
  • 19
    • 33947276703 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.75.032109
    • P. Zanardi, H. T. Quan, X. Wang, and C. P. Sun, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.032109 75, 032109 (2007).
    • (2007) Phys. Rev. A , vol.75 , pp. 032109
    • Zanardi, P.1    Quan, H.T.2    Wang, X.3    Sun, C.P.4
  • 20
    • 4243754128 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.78.2690
    • C. Jarzynski, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.78. 2690 78, 2690 (1997).
    • (1997) Phys. Rev. Lett. , vol.78 , pp. 2690
    • Jarzynski, C.1
  • 21
    • 76749165641 scopus 로고    scopus 로고
    • cond-mat/0007360.
    • J. Kurchan, e-print arXiv: cond-mat/0007360.
    • Kurchan, J.1
  • 23
    • 76749126456 scopus 로고    scopus 로고
    • Expanding up to second order in δh around h(2), c(ω) can be well approximated by c(ω)=18h22ω4(ω2-Em2)(EM2-ω2) δh2+O(δh4). This function has a flex at ωflex 3.61-h(2). Therefore the width of the peak is small compared to the bandwith roughly when 1-h(2) 10-1.
    • Expanding up to second order in δh around h(2), c(ω) can be well approximated by c(ω)=18h22ω4(ω2-Em2)(EM2-ω2) δh2+O(δh4). This function has a flex at ωflex 3.61-h(2). Therefore the width of the peak is small compared to the bandwith roughly when 1-h(2) 10-1.
  • 24
    • 76749124723 scopus 로고    scopus 로고
    • When h(2) is close to criticality, say h(2)=1+Δh, the band is approximately Λk(2)(1+Δh/2)sin(k/2). The number of frequencies which fall in the peak is given by the n satisfying Λkn(2)=ωflex. At first order we obtain n=O(LΔh), and so to have few frequencies in the peak we must have Lh(2)-1 1.
    • When h(2) is close to criticality, say h(2)=1+Δh, the band is approximately Λk(2)(1+Δh/2)sin(k/2). The number of frequencies which fall in the peak is given by the n satisfying Λkn(2)=ωflex. At first order we obtain n=O(LΔh), and so to have few frequencies in the peak we must have Lh(2)-1 1.
  • 25
    • 0141564662 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.91.067902
    • D. K. L. Oi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91. 067902 91, 067902 (2003).
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 067902
    • Oi, D.K.L.1
  • 26
    • 34548454416 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.99.095701
    • L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.095701 99, 095701 (2007).
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 095701
    • Campos Venuti, L.1    Zanardi, P.2
  • 28
    • 0035251554 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.86.1007
    • V. Aji and N. Goldenfeld, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.1007 86, 1007 (2001).
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 1007
    • Aji, V.1    Goldenfeld, N.2
  • 29
    • 42549111681 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.100.165706
    • A. Lamacraft and P. Fendley, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.165706 100, 165706 (2008).
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 165706
    • Lamacraft, A.1    Fendley, P.2
  • 30
    • 76749127420 scopus 로고    scopus 로고
    • More precisely, assume the lattice is bipartite and the quasimomenta satisfy some quantization in order to be roughly equally spaced: k=2πn/L. Then k(-1)kΛk is the difference between two multidimensional Riemann sums. If Λk is analytic, both these sums converge exponentially fast to their integral, and so their difference is exponentially small in L.
    • More precisely, assume the lattice is bipartite and the quasimomenta satisfy some quantization in order to be roughly equally spaced: k=2πn/L. Then k(-1)kΛk is the difference between two multidimensional Riemann sums. If Λk is analytic, both these sums converge exponentially fast to their integral, and so their difference is exponentially small in L.
  • 31
    • 0001581188 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.2.1075
    • E. Barouch, B. M. McCoy, and M. Dresden, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.1075 2, 1075 (1970).
    • (1970) Phys. Rev. A , vol.2 , pp. 1075
    • Barouch, E.1    McCoy, B.M.2    Dresden, M.3
  • 32
    • 76749170173 scopus 로고    scopus 로고
    • Here below we sketch why this is so. Let us suppose that ρ∞=limt→∞Ut(ρ0). Obviously ρ∞ is a fixed point for Ut, i.e., Ut(ρ∞)=Ut(limu→∞Uu(ρ0))= limu→∞Ut+u(ρ0)=limu→∞Uu(ρ0)=ρ∞. Using unitary invariance of the trace norm it follows that ∥Ut(ρ0)-ρ 1=∥Ut(ρ0-ρ∞)∥1=∥ρ0-ρ 1 and therefore limt→ ∥Ut(ρ0)-ρ 1=0 implies ρ0=ρ∞.
    • Here below we sketch why this is so. Let us suppose that ρ∞=limt→∞Ut(ρ0). Obviously ρ∞ is a fixed point for Ut, i.e., Ut(ρ∞)=Ut(limu→∞Uu(ρ0))= limu→∞Ut+u(ρ0)=limu→∞Uu(ρ0)=ρ∞. Using unitary invariance of the trace norm it follows that ∥Ut(ρ0)-ρ1= ∥Ut(ρ0-ρ∞)∥1=∥ρ0-ρ1 and therefore limt→Ut(ρ0)-ρ1=0 implies ρ0=ρ∞.
  • 33
    • 76749163157 scopus 로고    scopus 로고
    • Notice that in the infinite-dimensional case discussed above Eq. (1) implies P(α)=δ(α-A∞). Indeed from Eq. (1) it follows for any continuous f that f[A(t)]̄=f(A∞). Whence P(α)= δ[α-A(t)]̄=1/2π∫eiλαe-iλA(t)̄= 1/2π∫eiλαe-iλA(t)̄=1/2π∫eiλα e-iλA∞=δ(α-A∞).
    • Notice that in the infinite-dimensional case discussed above Eq. (1) implies P(α)=δ(α-A∞). Indeed from Eq. (1) it follows for any continuous f that f[A(t)]̄=f(A∞). Whence P(α)= δ[α-A(t)]̄=1/2π∫eiλαe-iλA(t)̄= 1/2π∫eiλαe-iλA(t)̄=1/2π∫eiλα e-iλA∞=δ(α-A∞).
  • 34
    • 76749152675 scopus 로고    scopus 로고
    • Ln(t)=ρψn,P(n)(ρψn)+ρψn,e-itH~(n)(ρψn) where H~(n)=(-P(n))H(n)(-P(n)). The time average of the second term is ρψn,FTn(ρψn)/T where FTn=(-iH~(n))-1[e-iTH~(n)-]. Since FTn is a bounded operator its expectation value divided by T goes to zero when T→∞.
    • Ln(t)=ρψn,P(n)(ρψn)+ρψn,e-itH~(n)(ρψn) where H~(n)=(-P(n))H(n)(-P(n)). The time average of the second term is ρψn,FTn(ρψn)/T where FTn=(-iH~(n))-1[e-iTH~(n)-]. Since FTn is a bounded operator its expectation value divided by T goes to zero when T→∞.
  • 35
    • 76749084171 scopus 로고    scopus 로고
    • In (ii) one has to measure H(n):=i=1n(i-1)H-(n-i) in ρψn.
    • In (ii) one has to measure H(n):=i=1n(i-1)H-(n-i) in ρψn.
  • 36
    • 76749151732 scopus 로고    scopus 로고
    • A more precise approximation valid also in region where δh is large is given by L(t)=Πk>0(1+c0k+Xk(t))L̄(1+k>0(1+c0k)-1Xk(t)). The two expressions coincide when δh is small.
    • A more precise approximation valid also in region where δh is large is given by L(t)=Πk>0(1+c0k+Xk(t))L̄(1+k>0(1+c0k)-1Xk(t)). The two expressions coincide when δh is small.
  • 37
    • 76749153257 scopus 로고    scopus 로고
    • This is precisely Eq. (5.6) of [31] in the zero temperature limit.
    • This is precisely Eq. (5.6) of [31] in the zero temperature limit.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.