메뉴 건너뛰기




Volumn 32, Issue 2, 2010, Pages 109-118

Eukaryotic cold shock domain proteins: Highly versatile regulators of gene expression

Author keywords

CSD; Exosome; Lin 28; S1; Translation initiation factor; UNR; YB 1

Indexed keywords

COLD SHOCK PROTEIN; CYTOPLASM PROTEIN; FROG GERM CELL SPECIFIC Y BOX PROTEIN 2; GLUCOSE REGULATED PROTEIN 78; INITIATION FACTOR 1A; INITIATION FACTOR 2ALPHA; INITIATION FACTOR 5A; NUCLEIC ACID; NUCLEIC ACID BINDING PROTEIN; PROTEIN GRP2; PROTEIN LIN 28; PROTEIN PRP22; PROTEIN RP40; PROTEIN RRP44; PROTEIN UPSTREAM N RAS; RIBOSOME RNA; RNA; RNA BINDING PROTEIN; UNCLASSIFIED DRUG; Y BOX BINDING PROTEIN 1;

EID: 76549101962     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.200900122     Document Type: Review
Times cited : (132)

References (88)
  • 1
    • 0036913982 scopus 로고    scopus 로고
    • OB-fold domains: A snapshot of the evolution of sequence, structure and function
    • Arcus V. 2002. OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr Opin Struct Biol 12: 794-801.
    • (2002) Curr Opin Struct Biol , vol.12 , pp. 794-801
    • Arcus, V.1
  • 3
    • 0026769818 scopus 로고
    • RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain
    • Landsman D. 1992. RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Res 20: 2861-4.
    • (1992) Nucleic Acids Res , vol.20 , pp. 2861-2864
    • Landsman, D.1
  • 4
    • 0031471204 scopus 로고    scopus 로고
    • The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold
    • Bycroft M, Hubbard TJ, Proctor M, et al. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88: 235-42.
    • (1997) Cell , vol.88 , pp. 235-242
    • Bycroft, M.1    Hubbard, T.J.2    Proctor, M.3
  • 6
    • 34250720036 scopus 로고    scopus 로고
    • Structure and function of bacterial cold shock proteins
    • Horn G, Hofweber R, Kremer W, et al. 2007. Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64: 1457-70.
    • (2007) Cell Mol Life Sci , vol.64 , pp. 1457-1470
    • Horn, G.1    Hofweber, R.2    Kremer, W.3
  • 7
    • 0031658803 scopus 로고    scopus 로고
    • A superfamily of proteins that contain the cold-shock domain
    • Graumann PL, Marahiel MA. 1998. A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23: 286-90.
    • (1998) Trends Biochem Sci , vol.23 , pp. 286-290
    • Graumann, P.L.1    Marahiel, M.A.2
  • 8
    • 34247348209 scopus 로고    scopus 로고
    • AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development
    • Fusaro AF, Bocca SN, Ramos RL, et al. 2007. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta 225: 1339-51.
    • (2007) Planta , vol.225 , pp. 1339-1351
    • Fusaro, A.F.1    Bocca, S.N.2    Ramos, R.L.3
  • 9
    • 35648999468 scopus 로고    scopus 로고
    • Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals
    • Sasaki K, Kim MH, Imai R. 2007. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364: 633-8.
    • (2007) Biochem Biophys Res Commun , vol.364 , pp. 633-638
    • Sasaki, K.1    Kim, M.H.2    Imai, R.3
  • 10
    • 0026088747 scopus 로고
    • Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes
    • Company M
    • Company M, Arenas J, Abelson J. 1991. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 349: 487-93.
    • (1991) Nature , vol.349 , pp. 487-493
    • Arenas, J.1    Abelson, J.2
  • 11
    • 0029885036 scopus 로고    scopus 로고
    • Cold shock domain proteins repress transcription from the GM-CSF promoter
    • Coles LS, Diamond P, Occhiodoro F, et al. 1996. Cold shock domain proteins repress transcription from the GM-CSF promoter. Nucleic Acids Res 24: 2311-7.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2311-2317
    • Coles, L.S.1    Diamond, P.2    Occhiodoro, F.3
  • 12
    • 0032147094 scopus 로고    scopus 로고
    • Gene regulation by Y-box proteins: Coupling control of transcription and translation
    • Matsumoto K, Wolffe AP. 1998. Gene regulation by Y-box proteins: coupling control of transcription and translation. Trends Cell Biol 8: 318-23.
    • (1998) Trends Cell Biol , vol.8 , pp. 318-323
    • Matsumoto, K.1    Wolffe, A.P.2
  • 13
    • 0036295228 scopus 로고    scopus 로고
    • The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1
    • Kloks CP, Spronk CA, Lasonder E, et al. 2002. The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. J Mol Biol 316: 317-26.
    • (2002) J Mol Biol , vol.316 , pp. 317-326
    • Kloks, C.P.1    Spronk, C.A.2    Lasonder, E.3
  • 14
    • 0042847334 scopus 로고    scopus 로고
    • YB-1 as a cell cycleregulated transcription factor facilitating cyclin A and cyclin B1 gene expression
    • Jurchott K, Bergmann S, Stein U, et al. 2003. YB-1 as a cell cycleregulated transcription factor facilitating cyclin A and cyclin B1 gene expression. J Biol Chem 278: 27988-96.
    • (2003) J Biol Chem , vol.278 , pp. 27988-27996
    • Jurchott, K.1    Bergmann, S.2    Stein, U.3
  • 15
    • 0035976989 scopus 로고    scopus 로고
    • The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing
    • Skabkin MA, Evdokimova V, Thomas AA, et al. 2001. The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing. J Biol Chem 276: 44841-7.
    • (2001) J Biol Chem , vol.276 , pp. 44841-44847
    • Skabkin, M.A.1    Evdokimova, V.2    Thomas, A.A.3
  • 16
    • 0032488821 scopus 로고    scopus 로고
    • The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro
    • Evdokimova VM, Kovrigina EA, Nashchekin DV, et al. 1998. The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro. J Biol Chem 273: 3574-81.
    • (1998) J Biol Chem , vol.273 , pp. 3574-3581
    • Evdokimova, V.M.1    Kovrigina, E.A.2    Nashchekin, D.V.3
  • 17
    • 0037013235 scopus 로고    scopus 로고
    • Positive and negative effects of the major mammalian messenger ribonucleoprotein p50 on binding of 40S ribosomal subunits to the initiation codon of beta-globin mRNA
    • Pisarev AV, Skabkin MA, Thomas AA, et al. 2002. Positive and negative effects of the major mammalian messenger ribonucleoprotein p50 on binding of 40S ribosomal subunits to the initiation codon of beta-globin mRNA. J Biol Chem 277: 15445-51.
    • (2002) J Biol Chem , vol.277 , pp. 15445-15451
    • Pisarev, A.V.1    Skabkin, M.A.2    Thomas, A.A.3
  • 18
    • 0038529622 scopus 로고    scopus 로고
    • The mRNA-binding protein YB-1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage
    • Nekrasov MP, Ivshina MP, Chernov KG, et al. 2003. The mRNA-binding protein YB-1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage. J Biol Chem 278: 13936-43.
    • (2003) J Biol Chem , vol.278 , pp. 13936-13943
    • Nekrasov, M.P.1    Ivshina, M.P.2    Chernov, K.G.3
  • 19
    • 0028200895 scopus 로고
    • A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes
    • Bouvet P, Wolffe AP. 1994. A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell 77: 931-41.
    • (1994) Cell , vol.77 , pp. 931-941
    • Bouvet, P.1    Wolffe, A.P.2
  • 20
    • 0038392678 scopus 로고    scopus 로고
    • Visualization of the reconstituted FRGY2-mRNA complexes by electron microscopy
    • Matsumoto K, Tanaka KJ, Aoki K, et al. 2003. Visualization of the reconstituted FRGY2-mRNA complexes by electron microscopy. Biochem Biophys Res Commun 306: 53-8.
    • (2003) Biochem Biophys Res Commun , vol.306 , pp. 53-58
    • Matsumoto, K.1    Tanaka, K.J.2    Aoki, K.3
  • 21
    • 0029787504 scopus 로고    scopus 로고
    • Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition
    • Matsumoto K, Meric F, Wolffe AP. 1996. Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition. J Biol Chem 271: 22706-12.
    • (1996) J Biol Chem , vol.271 , pp. 22706-22712
    • Matsumoto, K.1    Meric, F.2    Wolffe, A.P.3
  • 22
    • 0028834547 scopus 로고
    • Sequence-specific RNA recognition by the Xenopus Y-box proteins. An essential role for the cold shock domain
    • Bouvet P, Matsumoto K, Wolffe AP. 1995. Sequence-specific RNA recognition by the Xenopus Y-box proteins. An essential role for the cold shock domain. J Biol Chem 270: 28297-303.
    • (1995) J Biol Chem , vol.270 , pp. 28297-28303
    • Bouvet, P.1    Matsumoto, K.2    Wolffe, A.P.3
  • 23
    • 0033119730 scopus 로고    scopus 로고
    • Activities of cold-shock domain proteins in translation control
    • Sommerville J. 1999. Activities of cold-shock domain proteins in translation control. Bioessays 21: 319-25.
    • (1999) Bioessays , vol.21 , pp. 319-325
    • Sommerville, J.1
  • 24
    • 65349116534 scopus 로고    scopus 로고
    • Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition
    • Evdokimova V, Tognon C, Ng T, et al. 2009. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 15: 402-15.
    • (2009) Cancer Cell , vol.15 , pp. 402-415
    • Evdokimova, V.1    Tognon, C.2    Ng, T.3
  • 25
    • 0037829212 scopus 로고    scopus 로고
    • The pleiotropic functions of the Y-box-binding protein, YB-1
    • Kohno K, Izumi H, Uchiumi T, et al. 2003. The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 25: 691-8.
    • (2003) Bioessays , vol.25 , pp. 691-698
    • Kohno, K.1    Izumi, H.2    Uchiumi, T.3
  • 26
    • 0037783427 scopus 로고    scopus 로고
    • Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites
    • Moss EG, Tang L. 2003. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 258: 432-42.
    • (2003) Dev Biol , vol.258 , pp. 432-442
    • Moss, E.G.1    Tang, L.2
  • 27
    • 67649556287 scopus 로고    scopus 로고
    • An elegant miRror: MicroRNAs in stem cells, developmental timing and cancer
    • Nimmo RA, Slack FJ. 2009. An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118: 405-18.
    • (2009) Chromosoma , vol.118 , pp. 405-418
    • Nimmo, R.A.1    Slack, F.J.2
  • 28
    • 0030970775 scopus 로고    scopus 로고
    • The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA
    • Moss EG, Lee RC, Ambros V. 1997. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88: 637-46.
    • (1997) Cell , vol.88 , pp. 637-646
    • Moss, E.G.1    Lee, R.C.2    Ambros, V.3
  • 29
    • 27144475302 scopus 로고    scopus 로고
    • Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells
    • Wu L, Belasco JG. 2005. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol 25: 9198-208.
    • (2005) Mol Cell Biol , vol.25 , pp. 9198-9208
    • Wu, L.1    Belasco, J.G.2
  • 30
    • 36749043230 scopus 로고    scopus 로고
    • Induced pluripotent stem cell lines derived from human somatic cells
    • Yu J, Vodyanik MA, Smuga-Otto K, et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917-20.
    • (2007) Science , vol.318 , pp. 1917-1920
    • Yu, J.1    Vodyanik, M.A.2    Smuga-Otto, K.3
  • 31
    • 0346250854 scopus 로고    scopus 로고
    • The transcriptome profile of human embryonic stem cells as defined by SAGE
    • Richards M, Tan SP, Tan JH, et al. 2004. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22: 51-64.
    • (2004) Stem Cells , vol.22 , pp. 51-64
    • Richards, M.1    Tan, S.P.2    Tan, J.H.3
  • 32
    • 48649103982 scopus 로고    scopus 로고
    • A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment
    • Rybak A, Fuchs H, Smirnova L, et al. 2008. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10: 987-93.
    • (2008) Nat Cell Biol , vol.10 , pp. 987-993
    • Rybak, A.1    Fuchs, H.2    Smirnova, L.3
  • 33
    • 53949088050 scopus 로고    scopus 로고
    • Lin28 mediates the terminal uridylation of let-7 precursor microRNA
    • Heo I, Joo C, Cho J, et al. 2008. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell 32: 276-84.
    • (2008) Mol Cell , vol.32 , pp. 276-284
    • Heo, I.1    Joo, C.2    Cho, J.3
  • 34
    • 40849108663 scopus 로고    scopus 로고
    • Selective blockade of microRNA processing by Lin28
    • Viswanathan SR, Daley GQ, Gregory RI. 2008. Selective blockade of microRNA processing by Lin28. Science 320: 97-100.
    • (2008) Science , vol.320 , pp. 97-100
    • Viswanathan, S.R.1    Daley, G.Q.2    Gregory, R.I.3
  • 35
    • 67649881121 scopus 로고    scopus 로고
    • Lin28 promotes transformation and is associated with advanced human malignancies
    • Viswanathan SR, Powers JT, Einhorn W, et al. 2009. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41: 843-8.
    • (2009) Nat Genet , vol.41 , pp. 843-848
    • Viswanathan, S.R.1    Powers, J.T.2    Einhorn, W.3
  • 36
    • 34247589770 scopus 로고    scopus 로고
    • Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency
    • Polesskaya A, Cuvellier S, Naguibneva I, et al. 2007. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev 21: 1125-38.
    • (2007) Genes Dev , vol.21 , pp. 1125-1138
    • Polesskaya, A.1    Cuvellier, S.2    Naguibneva, I.3
  • 37
    • 60849116964 scopus 로고    scopus 로고
    • Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells
    • Xu B, Zhang K, Huang Y. 2009. Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells. RNA 15: 357-61.
    • (2009) RNA , vol.15 , pp. 357-361
    • Xu, B.1    Zhang, K.2    Huang, Y.3
  • 38
    • 33846991130 scopus 로고    scopus 로고
    • The mechanism of translation initiation in eukaryotes
    • Mathews MB, Sonenberg N, Hershey JWB. eds;, 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. pp
    • Pestova TV, Lorsch JR, Hellen CUT. 2007. The mechanism of translation initiation in eukaryotes. In Mathews MB, Sonenberg N, Hershey JWB. eds; Translational Control in Biology and Medicine, 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. pp. 87-128.
    • (2007) Translational Control in Biology and Medicine , pp. 87-128
    • Pestova, T.V.1    Lorsch, J.R.2    Hellen, C.U.T.3
  • 39
    • 25144502820 scopus 로고    scopus 로고
    • Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR
    • Dar AC, Dever TE, Sicheri F. 2005. Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122: 887-900.
    • (2005) Cell , vol.122 , pp. 887-900
    • Dar, A.C.1    Dever, T.E.2    Sicheri, F.3
  • 40
    • 12344305214 scopus 로고    scopus 로고
    • eIF2 and the control of cell physiology
    • Proud CG. 2005. eIF2 and the control of cell physiology. Semin Cell Dev Biol 16: 3-12.
    • (2005) Semin Cell Dev Biol , vol.16 , pp. 3-12
    • Proud, C.G.1
  • 41
    • 41549101139 scopus 로고    scopus 로고
    • Translational control of gene expression: A molecular switch for memory storage
    • Costa-Mattioli M, Sonenberg N. 2008. Translational control of gene expression: a molecular switch for memory storage. Prog Brain Res 169: 81-95.
    • (2008) Prog Brain Res , vol.169 , pp. 81-95
    • Costa-Mattioli, M.1    Sonenberg, N.2
  • 42
    • 55549118605 scopus 로고    scopus 로고
    • Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition
    • Mitchell SF, Lorsch JR. 2008. Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition. J Biol Chem 283: 27345-9.
    • (2008) J Biol Chem , vol.283 , pp. 27345-27349
    • Mitchell, S.F.1    Lorsch, J.R.2
  • 43
    • 33646852583 scopus 로고    scopus 로고
    • Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining
    • Acker MG, Shin BS, Dever TE, et al. 2006. Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. J Biol Chem 281: 8469-75.
    • (2006) J Biol Chem , vol.281 , pp. 8469-8475
    • Acker, M.G.1    Shin, B.S.2    Dever, T.E.3
  • 44
    • 27144517608 scopus 로고    scopus 로고
    • The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo
    • Fekete CA, Applefield DJ, Blakely SA, et al. 2005. The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J 24: 3588-601.
    • (2005) EMBO J , vol.24 , pp. 3588-3601
    • Fekete, C.A.1    Applefield, D.J.2    Blakely, S.A.3
  • 45
    • 0035910393 scopus 로고    scopus 로고
    • Carter AP, ClemonsWM Jr, Brodersen DE, et al. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291: 498-501.
    • Carter AP, ClemonsWM Jr, Brodersen DE, et al. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291: 498-501.
  • 46
    • 69849092725 scopus 로고    scopus 로고
    • Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing
    • Yu Y, Marintchev A, Kolupaeva VG, et al. 2009. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res 37: 5167-82.
    • (2009) Nucleic Acids Res , vol.37 , pp. 5167-5182
    • Yu, Y.1    Marintchev, A.2    Kolupaeva, V.G.3
  • 47
    • 34047263278 scopus 로고    scopus 로고
    • The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome
    • Passmore LA, Schmeing TM, Maag D, et al. 2007. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26: 41-50.
    • (2007) Mol Cell , vol.26 , pp. 41-50
    • Passmore, L.A.1    Schmeing, T.M.2    Maag, D.3
  • 48
    • 0033963789 scopus 로고    scopus 로고
    • The eIF1A solution structure reveals a large RNA-binding surface important for scanning function
    • Battiste JL, Pestova TV, Hellen CU, et al. 2000. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol Cell 5: 109-19.
    • (2000) Mol Cell , vol.5 , pp. 109-119
    • Battiste, J.L.1    Pestova, T.V.2    Hellen, C.U.3
  • 49
    • 34547756935 scopus 로고    scopus 로고
    • Translation initiation factor eIF1A possesses RNA annealing activity in its oligonucleotide-binding fold
    • Kwon SH, Lee IH, Kim NY, et al. 2007. Translation initiation factor eIF1A possesses RNA annealing activity in its oligonucleotide-binding fold. Biochem Biophys Res Commun 361: 681-6.
    • (2007) Biochem Biophys Res Commun , vol.361 , pp. 681-686
    • Kwon, S.H.1    Lee, I.H.2    Kim, N.Y.3
  • 50
    • 0018095166 scopus 로고
    • The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes
    • Benne R, Hershey JW. 1978. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem 253: 3078-87.
    • (1978) J Biol Chem , vol.253 , pp. 3078-3087
    • Benne, R.1    Hershey, J.W.2
  • 51
    • 33845964691 scopus 로고    scopus 로고
    • Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway
    • Schrader R, Young C, Kozian D, et al. 2006. Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway. J Biol Chem 281: 35336-46.
    • (2006) J Biol Chem , vol.281 , pp. 35336-35346
    • Schrader, R.1    Young, C.2    Kozian, D.3
  • 52
    • 65549167195 scopus 로고    scopus 로고
    • Hypusine-containing protein eIF5A promotes translation elongation
    • Saini P, Eyler DE, Green R, et al. 2009. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459: 118-21.
    • (2009) Nature , vol.459 , pp. 118-121
    • Saini, P.1    Eyler, D.E.2    Green, R.3
  • 53
    • 0032167995 scopus 로고    scopus 로고
    • Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution
    • Kim KK, Hung LW, Yokota H, et al. 1998. Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. Proc Natl Acad Sci USA 95: 10419-24.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 10419-10424
    • Kim, K.K.1    Hung, L.W.2    Yokota, H.3
  • 54
  • 55
    • 33846030499 scopus 로고    scopus 로고
    • Structural and biochemical characterization of the yeast exosome component Rrp40
    • Oddone A, Lorentzen E, Basquin J, et al. 2007. Structural and biochemical characterization of the yeast exosome component Rrp40. EMBO Rep 8: 63-9.
    • (2007) EMBO Rep , vol.8 , pp. 63-69
    • Oddone, A.1    Lorentzen, E.2    Basquin, J.3
  • 56
    • 40849106786 scopus 로고    scopus 로고
    • Structure of the active subunit of the yeast exosome core, Rrp44: Diverse modes of substrate recruitment in the RNase II nuclease family
    • Lorentzen E, Basquin J, Tomecki R, et al. 2008. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol Cell 29: 717-28.
    • (2008) Mol Cell , vol.29 , pp. 717-728
    • Lorentzen, E.1    Basquin, J.2    Tomecki, R.3
  • 57
    • 0024991889 scopus 로고
    • Characterization of unr; a gene closely linked to N-ras
    • Jeffers M, Paciucci R, Pellicer A. 1990. Characterization of unr; a gene closely linked to N-ras. Nucleic Acids Res 18: 4891-99.
    • (1990) Nucleic Acids Res , vol.18 , pp. 4891-4899
    • Jeffers, M.1    Paciucci, R.2    Pellicer, A.3
  • 58
    • 0031583913 scopus 로고    scopus 로고
    • Transcription of unr (upstream of N-ras) down-modulates N-ras expression in vivo
    • Boussadia O, Amiot F, Cases S, et al. 1997. Transcription of unr (upstream of N-ras) down-modulates N-ras expression in vivo. FEBS Lett 420: 20-4.
    • (1997) FEBS Lett , vol.420 , pp. 20-24
    • Boussadia, O.1    Amiot, F.2    Cases, S.3
  • 59
    • 0028300838 scopus 로고
    • Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains
    • Jacquemin-Sablon H, Triqueneaux G, Deschamps S, et al. 1994. Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. Nucleic Acids Res 22: 2643-50.
    • (1994) Nucleic Acids Res , vol.22 , pp. 2643-2650
    • Jacquemin-Sablon, H.1    Triqueneaux, G.2    Deschamps, S.3
  • 60
    • 0032958085 scopus 로고    scopus 로고
    • The unr gene: Evolutionary considerations and nucleic acid-binding properties of its long isoform product
    • Ferrer N, Garcia-Espana A, Jeffers M, et al. 1999. The unr gene: evolutionary considerations and nucleic acid-binding properties of its long isoform product. DNA Cell Biol 18: 209-18.
    • (1999) DNA Cell Biol , vol.18 , pp. 209-218
    • Ferrer, N.1    Garcia-Espana, A.2    Jeffers, M.3
  • 61
    • 64549117893 scopus 로고    scopus 로고
    • Dual sex-specific functions of Drosophila upstream of N-ras in the control of X chromosome dosage compensation
    • Patalano S, Mihailovich M, Belacortu Y, et al. 2009. Dual sex-specific functions of Drosophila upstream of N-ras in the control of X chromosome dosage compensation. Development 136: 689-98.
    • (2009) Development , vol.136 , pp. 689-698
    • Patalano, S.1    Mihailovich, M.2    Belacortu, Y.3
  • 62
    • 0026843162 scopus 로고
    • The product of unr, the highly conserved gene upstream of N-ras, contains multiple repeats similar to the cold-shock domain (CSD), a putative DNA-binding motif
    • Doniger J, Landsman D, Gonda MA, et al. 1992. The product of unr, the highly conserved gene upstream of N-ras, contains multiple repeats similar to the cold-shock domain (CSD), a putative DNA-binding motif. New Biol 4: 389-95.
    • (1992) New Biol , vol.4 , pp. 389-395
    • Doniger, J.1    Landsman, D.2    Gonda, M.A.3
  • 63
    • 0033560701 scopus 로고    scopus 로고
    • RNA binding specificity of Unr, a protein with five cold shock domains
    • TriqueneauxG, VeltenM, Franzon P, et al. 1999. RNA binding specificity of Unr, a protein with five cold shock domains. Nucleic Acids Res 27: 1926-34.
    • (1999) Nucleic Acids Res , vol.27 , pp. 1926-1934
    • Triqueneaux, G.1    Velten, M.2    Franzon, P.3
  • 64
    • 4043116999 scopus 로고    scopus 로고
    • All five cold-shock domains of unr (upstream of N-ras) are required for stimulation of human rhinovirus RNA translation
    • Brown EC, Jackson RJ. 2004. All five cold-shock domains of unr (upstream of N-ras) are required for stimulation of human rhinovirus RNA translation. J Gen Virol 85: 2279-87.
    • (2004) J Gen Virol , vol.85 , pp. 2279-2287
    • Brown, E.C.1    Jackson, R.J.2
  • 65
    • 40449092645 scopus 로고    scopus 로고
    • Functional domains of Drosophila UNR in translational control
    • Abaza I, Gebauer F. 2008. Functional domains of Drosophila UNR in translational control. RNA 14: 482-90.
    • (2008) RNA , vol.14 , pp. 482-490
    • Abaza, I.1    Gebauer, F.2
  • 66
    • 0029857688 scopus 로고    scopus 로고
    • ALL-1 interacts with unr, a protein containing multiple cold shock domains
    • Leshkowitz D, Rozenblatt O, Nakamura T, et al. 1996. ALL-1 interacts with unr, a protein containing multiple cold shock domains. Oncogene 13: 2027-31.
    • (1996) Oncogene , vol.13 , pp. 2027-2031
    • Leshkowitz, D.1    Rozenblatt, O.2    Nakamura, T.3
  • 67
    • 32044461068 scopus 로고    scopus 로고
    • Drosophila UNR is required for translational repression of male-specific lethal 2 mRNA during regulation of X-chromosome dosage compensation
    • Abaza I, Coll O, Patalano S, et al. 2006. Drosophila UNR is required for translational repression of male-specific lethal 2 mRNA during regulation of X-chromosome dosage compensation. Genes Dev 20: 380-9.
    • (2006) Genes Dev , vol.20 , pp. 380-389
    • Abaza, I.1    Coll, O.2    Patalano, S.3
  • 68
    • 0027463834 scopus 로고
    • Exon skipping in the expression of the gene immediately upstream of N-ras (unr/NRU)
    • Boussadia O, Jacquemin-Sablon H, Dautry F. 1993. Exon skipping in the expression of the gene immediately upstream of N-ras (unr/NRU). Biochim Biophys Acta 1172: 64-72.
    • (1993) Biochim Biophys Acta , vol.1172 , pp. 64-72
    • Boussadia, O.1    Jacquemin-Sablon, H.2    Dautry, F.3
  • 69
    • 19844365832 scopus 로고    scopus 로고
    • UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein
    • Cornelis S, Tinton SA, Schepens B, et al. 2005. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Res 33: 3095-108.
    • (2005) Nucleic Acids Res , vol.33 , pp. 3095-3108
    • Cornelis, S.1    Tinton, S.A.2    Schepens, B.3
  • 70
    • 30844442446 scopus 로고    scopus 로고
    • Regulation of Unr expression by 5′- and 3′-untranslated regions of its mRNA through modulation of stability and IRES mediated translation
    • Dormoy-Raclet V, Markovits J, Jacquemin-Sablon A, et al. 2005. Regulation of Unr expression by 5′- and 3′-untranslated regions of its mRNA through modulation of stability and IRES mediated translation. RNA Biol 2: e27-35.
    • (2005) RNA Biol , vol.2
    • Dormoy-Raclet, V.1    Markovits, J.2    Jacquemin-Sablon, A.3
  • 71
    • 33846213631 scopus 로고    scopus 로고
    • A role for hnRNP C1/ C2 and Unr in internal initiation of translation during mitosis
    • Schepens B, Tinton SA, Bruynooghe Y, et al. 2007. A role for hnRNP C1/ C2 and Unr in internal initiation of translation during mitosis. EMBO J 26: 158-69.
    • (2007) EMBO J , vol.26 , pp. 158-169
    • Schepens, B.1    Tinton, S.A.2    Bruynooghe, Y.3
  • 72
    • 0345549480 scopus 로고    scopus 로고
    • Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo
    • Evans JR, Mitchell SA, Spriggs KA, et al. 2003. Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 22: 8012-20.
    • (2003) Oncogene , vol.22 , pp. 8012-8020
    • Evans, J.R.1    Mitchell, S.A.2    Spriggs, K.A.3
  • 73
    • 0035027806 scopus 로고    scopus 로고
    • Protein factor requirements of the Apaf-1 internal ribosome entry segment: Roles of polypyrimidine tract binding protein and upstream of N-ras
    • Mitchell SA, Brown EC, Coldwell MJ, et al. 2001. Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol 21: 3364-74.
    • (2001) Mol Cell Biol , vol.21 , pp. 3364-3374
    • Mitchell, S.A.1    Brown, E.C.2    Coldwell, M.J.3
  • 74
    • 12744278197 scopus 로고    scopus 로고
    • Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: Roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha
    • Tinton SA, Schepens B, Bruynooghe Y, et al. 2005. Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha. Biochem J 385: 155-63.
    • (2005) Biochem J , vol.385 , pp. 155-163
    • Tinton, S.A.1    Schepens, B.2    Bruynooghe, Y.3
  • 75
    • 0037334142 scopus 로고    scopus 로고
    • Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus
    • Boussadia O, Niepmann M, Creancier L, et al. 2003. Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol 77: 3353-9.
    • (2003) J Virol , vol.77 , pp. 3353-3359
    • Boussadia, O.1    Niepmann, M.2    Creancier, L.3
  • 76
    • 0037349339 scopus 로고    scopus 로고
    • The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr
    • Mitchell SA, Spriggs KA, Coldwell MJ, et al. 2003. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell 11: 757-71.
    • (2003) Mol Cell , vol.11 , pp. 757-771
    • Mitchell, S.A.1    Spriggs, K.A.2    Coldwell, M.J.3
  • 77
    • 0033557935 scopus 로고    scopus 로고
    • unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA
    • Hunt SL, Hsuan JJ, Totty N, et al. 1999. unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev 13: 437-48.
    • (1999) Genes Dev , vol.13 , pp. 437-448
    • Hunt, S.L.1    Hsuan, J.J.2    Totty, N.3
  • 78
    • 0030678550 scopus 로고    scopus 로고
    • The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control
    • Bashaw GJ, Baker BS. 1997. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell 89: 789-98.
    • (1997) Cell , vol.89 , pp. 789-798
    • Bashaw, G.J.1    Baker, B.S.2
  • 79
    • 0030913367 scopus 로고    scopus 로고
    • Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism
    • Kelley RL, Wang J, Bell L, et al. 1997. Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387: 195-9.
    • (1997) Nature , vol.387 , pp. 195-199
    • Kelley, R.L.1    Wang, J.2    Bell, L.3
  • 80
    • 0033229825 scopus 로고    scopus 로고
    • Translational control of dosage compensation in Drosophila by Sex-lethal: Cooperative silencing via the 5′ and 3′ UTRs of msl-2 mRNA is independent of the poly(A) tail
    • Gebauer F, Corona DF, Preiss T, et al. 1999. Translational control of dosage compensation in Drosophila by Sex-lethal: cooperative silencing via the 5′ and 3′ UTRs of msl-2 mRNA is independent of the poly(A) tail. EMBO J 18: 6146-54.
    • (1999) EMBO J , vol.18 , pp. 6146-6154
    • Gebauer, F.1    Corona, D.F.2    Preiss, T.3
  • 81
    • 32044436719 scopus 로고    scopus 로고
    • Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3′ UTR: Translational repression for dosage compensation
    • Duncan K, Grskovic M, Strein C, et al. 2006. Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3′ UTR: translational repression for dosage compensation. Genes Dev 20: 368-79.
    • (2006) Genes Dev , vol.20 , pp. 368-379
    • Duncan, K.1    Grskovic, M.2    Strein, C.3
  • 82
    • 70449638286 scopus 로고    scopus 로고
    • The SXL-UNR corepressor complex uses a PABP-mediated mechanism to inhibit ribosome recruitment to msl-2 mRNA
    • Duncan K, Strein C, Hentze MW. 2009. The SXL-UNR corepressor complex uses a PABP-mediated mechanism to inhibit ribosome recruitment to msl-2 mRNA. Mol Cell 136: 571-82.
    • (2009) Mol Cell , vol.136 , pp. 571-582
    • Duncan, K.1    Strein, C.2    Hentze, M.W.3
  • 83
    • 31144443606 scopus 로고    scopus 로고
    • The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex
    • Patel GP, Ma S, Bag J. 2005. The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res 33: 7074-89.
    • (2005) Nucleic Acids Res , vol.33 , pp. 7074-7089
    • Patel, G.P.1    Ma, S.2    Bag, J.3
  • 84
    • 34247399198 scopus 로고    scopus 로고
    • Unr, a cytoplasmic RNA-binding protein with cold-shock domains, is involved in control of apoptosis in ES and HuH7 cells
    • Dormoy-Raclet V, Markovits J, Malato Y, et al. 2007. Unr, a cytoplasmic RNA-binding protein with cold-shock domains, is involved in control of apoptosis in ES and HuH7 cells. Oncogene 26: 2595-605.
    • (2007) Oncogene , vol.26 , pp. 2595-2605
    • Dormoy-Raclet, V.1    Markovits, J.2    Malato, Y.3
  • 86
    • 0033603541 scopus 로고    scopus 로고
    • Early animal evolution: Emerging views from comparative biology and geology
    • Knoll AH, Carroll SB. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284: 2129-37.
    • (1999) Science , vol.284 , pp. 2129-2137
    • Knoll, A.H.1    Carroll, S.B.2
  • 87
    • 36249011994 scopus 로고    scopus 로고
    • Internal initiation of translation from the human rhinovirus-2 internal ribosome entry site requires the binding of Unr to two distinct sites on the 5′ untranslated region
    • Anderson EC, Hunt SL, Jackson RJ. 2007. Internal initiation of translation from the human rhinovirus-2 internal ribosome entry site requires the binding of Unr to two distinct sites on the 5′ untranslated region. J Gen Virol 88: 3043-52.
    • (2007) J Gen Virol , vol.88 , pp. 3043-3052
    • Anderson, E.C.1    Hunt, S.L.2    Jackson, R.J.3
  • 88
    • 33745646292 scopus 로고    scopus 로고
    • In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability
    • Dinur M, Kilav R, Sela-Brown A, et al. 2006. In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol 20: 1652-60.
    • (2006) Mol Endocrinol , vol.20 , pp. 1652-1660
    • Dinur, M.1    Kilav, R.2    Sela-Brown, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.