-
1
-
-
0002379296
-
Uniform limit theorems for sums of independent random variables
-
viii+222 pp
-
ARAK, T. V. AND ZAÎTSEV, A. YU. (1988). Uniform limit theorems for sums of independent random variables. Proc. Steklov Inst. Math. 174, viii+222 pp.
-
(1988)
Proc. Steklov Inst. Math
, vol.174
-
-
ARAK, T.V.1
ZAÎTSEV, A.Y.2
-
2
-
-
12344273270
-
Comparing outcomes across providers
-
3rd edn. Health Administration Press, Chicago, IL, pp
-
ASH, A., SHWARTZ, M. AND PEKÖZ, E. (2003). Comparing outcomes across providers. In Risk Adjustment for Measuring Health Care Outcomes, 3rd edn. Health Administration Press, Chicago, IL, pp. 297-333.
-
(2003)
Risk Adjustment for Measuring Health Care Outcomes
, pp. 297-333
-
-
ASH, A.1
SHWARTZ, M.2
PEKÖZ, E.3
-
3
-
-
38249009426
-
Stein's method and point process approximation
-
BARBOUR, A. D. AND BROWN, T. C. (1992). Stein's method and point process approximation. Stoch. Process. Appl. 43, 9-31.
-
(1992)
Stoch. Process. Appl
, vol.43
, pp. 9-31
-
-
BARBOUR, A.D.1
BROWN, T.C.2
-
4
-
-
0036018189
-
Total variation asymptotics for sums of independent integer random variables
-
BARBOUR, A. D. AND ČEKANAVIČIUS, V. (2002). Total variation asymptotics for sums of independent integer random variables. Ann. Prob. 30, 509-545.
-
(2002)
Ann. Prob
, vol.30
, pp. 509-545
-
-
BARBOUR, A.D.1
ČEKANAVIČIUS, V.2
-
5
-
-
70449565494
-
An Introduction to Stein's Method
-
BARBOUR, A. D. AND CHEN, L. H. Y, eds, Singapore University Press
-
BARBOUR, A. D. AND CHEN, L. H. Y. (eds) (2005). An Introduction to Stein's Method (Lecture Notes Ser., Inst. Math. Sci., National Uni. Singapore 4), Singapore University Press.
-
(2005)
Lecture Notes Ser., Inst. Math. Sci., National Uni. Singapore
, vol.4
-
-
-
6
-
-
0035413565
-
Compound Poisson approximation: A user's guide
-
BARBOUR, A. D. AND CHRYSSAPHINOU, O. (2001). Compound Poisson approximation: a user's guide. Ann. Appl. Prob. 11, 964-1002.
-
(2001)
Ann. Appl. Prob
, vol.11
, pp. 964-1002
-
-
BARBOUR, A.D.1
CHRYSSAPHINOU, O.2
-
7
-
-
33845693426
-
Translated Poisson approximation for Markov chains
-
BARBOUR, A. D. AND LINDVALL, T. (2006). Translated Poisson approximation for Markov chains. J. Theoret. Prob. 19, 609-630.
-
(2006)
J. Theoret. Prob
, vol.19
, pp. 609-630
-
-
BARBOUR, A.D.1
LINDVALL, T.2
-
8
-
-
84996136249
-
-
BARBOUR, A. D. AND XIA, A. (1999). Poisson perturbations. ESAIM Prob. Statist. 3, 131-150 (electronic).
-
BARBOUR, A. D. AND XIA, A. (1999). Poisson perturbations. ESAIM Prob. Statist. 3, 131-150 (electronic).
-
-
-
-
9
-
-
0000549988
-
Compound Poisson approximation for nonnegative random variables via Stein's method
-
BARBOUR, A. D., CHEN, L. H. Y. AND LOH, W.-L. (1992a). Compound Poisson approximation for nonnegative random variables via Stein's method. Ann. Prob. 20, 1843-1866.
-
(1992)
Ann. Prob
, vol.20
, pp. 1843-1866
-
-
BARBOUR, A.D.1
CHEN, L.H.Y.2
LOH, W.-L.3
-
10
-
-
76449118598
-
-
BARBOUR, A. D., L. HOLST,. AND JANSON, S. (1992b). Poisson Approximation (Oxford Stud. Prob. 2). Clarendon Press, Oxford.
-
BARBOUR, A. D., L. HOLST,. AND JANSON, S. (1992b). Poisson Approximation (Oxford Stud. Prob. 2). Clarendon Press, Oxford.
-
-
-
-
11
-
-
34248597627
-
Binomial approximation to the Markov binomial distribution
-
ČEKANAVIČIUS, V. AND ROOS, B. (2007). Binomial approximation to the Markov binomial distribution. Acta Appl. Math. 96, 137-146.
-
(2007)
Acta Appl. Math
, vol.96
, pp. 137-146
-
-
ČEKANAVIČIUS, V.1
ROOS, B.2
-
12
-
-
10644237294
-
Centered Poisson approximation by the Stein method
-
ČEKANAVIČIUS, V. AND VAǏTKUS, P. (2001). Centered Poisson approximation by the Stein method. Lithuanian Math. J. 41, 319-329.
-
(2001)
Lithuanian Math. J
, vol.41
, pp. 319-329
-
-
ČEKANAVIČIUS, V.1
VAǏTKUS, P.2
-
13
-
-
17844398053
-
On the convergence of Poisson binomial to Poisson distributions
-
CHEN, L. H. Y. (1974). On the convergence of Poisson binomial to Poisson distributions. Ann. Prob. 2, 178-180.
-
(1974)
Ann. Prob
, vol.2
, pp. 178-180
-
-
CHEN, L.H.Y.1
-
14
-
-
0001067389
-
Poisson approximation for dependent trials
-
CHEN, L. H. Y. (1975). Poisson approximation for dependent trials. Ann. Prob. 3, 534-545.
-
(1975)
Ann. Prob
, vol.3
, pp. 534-545
-
-
CHEN, L.H.Y.1
-
15
-
-
0031313967
-
Statistical applications of the Poisson-binomial and conditional Bernoulli distributions
-
CHEN, S. X. AND LIU, J. S. (1997). Statistical applications of the Poisson-binomial and conditional Bernoulli distributions. Statistica Sinica 7, 875-892.
-
(1997)
Statistica Sinica
, vol.7
, pp. 875-892
-
-
CHEN, S.X.1
LIU, J.S.2
-
16
-
-
0036441048
-
Approximating the number of successes in independent trials: Binomial versus Poisson
-
CHOI, K. P. AND XIA, A. (2002). Approximating the number of successes in independent trials: binomial versus Poisson. Ann. Appl. Prob. 12, 1139-1148.
-
(2002)
Ann. Appl. Prob
, vol.12
, pp. 1139-1148
-
-
CHOI, K.P.1
XIA, A.2
-
17
-
-
0003014023
-
Binomial approximation to the Poisson binomial distribution
-
EHM, W. (1991). Binomial approximation to the Poisson binomial distribution. Statist. Prob. Lett. 11, 7-16.
-
(1991)
Statist. Prob. Lett
, vol.11
, pp. 7-16
-
-
EHM, W.1
-
18
-
-
0001043914
-
An approximation theorem for the Poisson binomial distribution
-
LE CAM, L. (1960). An approximation theorem for the Poisson binomial distribution. Pacific J. Math. 10, 1181-1197.
-
(1960)
Pacific J. Math
, vol.10
, pp. 1181-1197
-
-
LE CAM, L.1
-
19
-
-
0001467526
-
Stein's method and multinomial approximation
-
LOH, W.-L. (1992). Stein's method and multinomial approximation. Ann. Appl. Prob. 2, 536-554.
-
(1992)
Ann. Appl. Prob
, vol.2
, pp. 536-554
-
-
LOH, W.-L.1
-
21
-
-
34250759840
-
A shorter proof of Kanter's Bessel function concentration bound
-
MATTNER, L. AND ROOS, B. (2007). A shorter proof of Kanter's Bessel function concentration bound. Prob. Theory Relat. Fields 139, 191-205.
-
(2007)
Prob. Theory Relat. Fields
, vol.139
, pp. 191-205
-
-
MATTNER, L.1
ROOS, B.2
-
22
-
-
0040793955
-
Stein's method for geometric approximation
-
PEKÖZ, E. A. (1996). Stein's method for geometric approximation. J. Appl. Prob. 33, 707-713.
-
(1996)
J. Appl. Prob
, vol.33
, pp. 707-713
-
-
PEKÖZ, E.A.1
-
23
-
-
76449087238
-
Approximate Bayesian models for aggregate data when individual-level data is confidential or unavailable
-
Submitted
-
PEKÖZ, E. A., SHWARTZ, M., CHRISTIANSEN, C. AND BERLOWITZ, D. (2009). Approximate Bayesian models for aggregate data when individual-level data is confidential or unavailable. Submitted.
-
(2009)
-
-
PEKÖZ, E.A.1
SHWARTZ, M.2
CHRISTIANSEN, C.3
BERLOWITZ, D.4
-
24
-
-
0031071299
-
Probabilistic bounds on the coefficients of polynomials with only real zeros
-
PITMAN, J. (1997). Probabilistic bounds on the coefficients of polynomials with only real zeros. J. Combinatorial Theory A 77, 279-303.
-
(1997)
J. Combinatorial Theory A
, vol.77
, pp. 279-303
-
-
PITMAN, J.1
-
25
-
-
67349131956
-
Three general approaches to Stein's method
-
An Introduction to Stein's Method, Singapore University Press, pp
-
REINERT, G. (2005). Three general approaches to Stein's method. In An Introduction to Stein's Method (Lecture Notes Ser., Inst. Math. Sci., National Uni. Singapore 4), Singapore University Press, pp. 183-221.
-
(2005)
Lecture Notes Ser., Inst. Math. Sci., National Uni. Singapore
, vol.4
, pp. 183-221
-
-
REINERT, G.1
-
26
-
-
33947407559
-
Approximation of sums of conditionally independent variables by the translated Poisson distribution
-
RÖLLIN, A. (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli 11, 1115-1128.
-
(2005)
Bernoulli
, vol.11
, pp. 1115-1128
-
-
RÖLLIN, A.1
-
27
-
-
43449096918
-
Symmetric and centered binomial approximation of sums of locally dependent random variables
-
RÖLLIN, A. (2008). Symmetric and centered binomial approximation of sums of locally dependent random variables. Electron. J. Prob. 13, 756-776.
-
(2008)
Electron. J. Prob
, vol.13
, pp. 756-776
-
-
RÖLLIN, A.1
-
28
-
-
0035648910
-
Binomial approximation to the Poisson binomial distribution: The Krawtchouk expansion
-
ROOS, B. (2000). Binomial approximation to the Poisson binomial distribution: the Krawtchouk expansion. Theory Prob. Appl. 45, 258-272.
-
(2000)
Theory Prob. Appl
, vol.45
, pp. 258-272
-
-
ROOS, B.1
-
30
-
-
21444438740
-
Binomial approximation for dependent indicators
-
SOON, S. Y. T. (1996). Binomial approximation for dependent indicators. Statistica Sinica 6, 703-714.
-
(1996)
Statistica Sinica
, vol.6
, pp. 703-714
-
-
SOON, S.Y.T.1
-
31
-
-
0000457248
-
A bound for the error in the normal approximation to the distribution of a sum of dependent random variables
-
University of California Press, Berkeley, pp
-
STEIN, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. II, University of California Press, Berkeley, pp. 583-602.
-
(1972)
Proc. 6th Berkeley Symp. Math. Statist. Prob
, vol.2
, pp. 583-602
-
-
STEIN, C.1
|