메뉴 건너뛰기




Volumn 9, Issue 4, 2009, Pages 519-548

A fractional poisson equation: Existence, regularity and approximations of the solution

Author keywords

Finite differences; Fractional brownian field; Rate of convergence; Stochastic partial differential equations

Indexed keywords


EID: 76449104867     PISSN: 02194937     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219493709002762     Document Type: Article
Times cited : (8)

References (28)
  • 2
    • 0003297436 scopus 로고
    • An introduction to continuity, extrema, and related topics for general gaussian processes
    • R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Lecture Notes-Monographs Series, Vol.12 (Inst. Math. Statist., 1990).
    • (1990) Lecture Notes-Monographs Series, Inst. Math. Statist , vol.12
    • Adler, R.J.1
  • 3
    • 84972500849 scopus 로고
    • The spaces Lp with mixed norm
    • A. Benedek and R. Panzone, The spaces Lp with mixed norm, Duke Math. J. 28 (1961) 301-324.
    • (1961) Duke Math. J , vol.28 , pp. 301-324
    • Benedek, A.1    Panzone, R.2
  • 5
    • 0010092088 scopus 로고
    • Progress in Probability, Vol.22 (Birkhäuser, 1990), pp. 219-233.
    • (1990) Progress in Probability , vol.22 , pp. 219-233
  • 6
    • 10644288767 scopus 로고
    • Quasi-linear elliptic stochastic partial differential equation: Markov property
    • C. Donati-Martin, Quasi-linear elliptic stochastic partial differential equation: Markov property, Stoch. Stoch. Rep. 41 (1992) 219-240.
    • (1992) Stoch. Stoch. Rep , vol.41 , pp. 219-240
    • Donati-Martin, C.1
  • 7
    • 0003374292 scopus 로고
    • Markov property for elliptic stochastic partial differential equation
    • C. Donati-Martin and D. Nualart, Markov property for elliptic stochastic partial differential equation, Stoch. Stoch. Rep. 46 (1994) 107-115.
    • (1994) Stoch. Stoch. Rep , vol.46 , pp. 107-115
    • Donati-Martin, C.1    Nualart, D.2
  • 8
    • 0003370536 scopus 로고
    • Classical potential theory its probabilistic counterpart
    • Springer-Verlag
    • J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften, Vol.262 (Springer-Verlag, 1984).
    • (1984) Grundlehren der Mathematischen Wissenschaften , vol.262
    • Doob, J.L.1
  • 9
    • 0141936531 scopus 로고    scopus 로고
    • A general fractional white noise theory and applications to finance
    • R. J. Elliott and J. van der Hoek, A general fractional white noise theory and applications to finance, Math. Fin. 13 (2003) 301-330.
    • (2003) Math. Fin , vol.13 , pp. 301-330
    • Elliott, R.J.1    Hoek Der J.Van2
  • 11
    • 0030502739 scopus 로고    scopus 로고
    • On the prediction of fractional Brownian motion
    • G. Gripenberg and I. Norros, On the prediction of fractional Brownian motion, J. Appl. Probab. 33 (1996) 400-410.
    • (1996) J. Appl. Probab , vol.33 , pp. 400-410
    • Gripenberg, G.1    Norros, I.2
  • 12
    • 34248143380 scopus 로고    scopus 로고
    • On numerical solution of stochastic partial differential equations of elliptic type
    • I. Gyöngy and T. Martínez, On numerical solution of stochastic partial differential equations of elliptic type, Stoch. Int. J. Probab. Stoch. Process. 78 (2006) 213-231.
    • (2006) Stoch. Int. J. Probab. Stoch. Process , vol.78 , pp. 213-231
    • Gyöngy, I.1    Martínez, T.2
  • 13
    • 0000352250 scopus 로고    scopus 로고
    • A class of stochastic partial differential equations driven by fractional white noise
    • eds. F. Gesztesy et al. (Canadian Mathematical Society)
    • Y. Hu, A class of stochastic partial differential equations driven by fractional white noise, in Stochastic Processes, Physics and Geometry: New Interplays II, eds. F. Gesztesy et al. (Canadian Mathematical Society, 2000), pp. 317-325.
    • (2000) Stochastic Processes Physics and Geometry: New Interplays II , pp. 317-325
    • Hu, Y.1
  • 14
    • 0001059286 scopus 로고    scopus 로고
    • Heat equations with fractional white noise potentials
    • Y. Hu, Heat equations with fractional white noise potentials, Appl. Math. Optim. 43 (2001) 221-243.
    • (2001) Appl. Math. Optim , vol.43 , pp. 221-243
    • Hu, Y.1
  • 15
    • 0000352250 scopus 로고    scopus 로고
    • Stochastic partial differential equations driven by multiparameter fractional white noise
    • eds. F. Gesztesy et al. (Canadian Mathematical Society
    • Y. Hu, B. Oksendal and T. Zhang, Stochastic partial differential equations driven by multiparameter fractional white noise, in Stochastic Processes, Physics and Geometry: New Interplays II, eds. F. Gesztesy et al. (Canadian Mathematical Society, 2000), pp. 327-337.
    • (2000) Stochastic Processes, Physics and Geometry: New Interplays II , pp. 327-337
    • Hu, Y.1    Oksendal, B.2    Zhang, T.3
  • 16
    • 1642380843 scopus 로고    scopus 로고
    • General fractional multiparameter white noise theory and stochastic partial differential equations
    • Y. Hu, B. Oksendal and T. Zhang, General fractional multiparameter white noise theory and stochastic partial differential equations, Comm. Partial Diff. Eq. 29 (2004) 1-23.
    • (2004) Comm. Partial Diff. Eq , vol.29 , pp. 1-23
    • Hu, Y.1    Oksendal, B.2    Zhang, T.3
  • 17
    • 70149104038 scopus 로고    scopus 로고
    • A stochastic modelling methodology based on weighted Wiener chaos and Malliavin calculus
    • G. E. Karniadakis, B. L. Rozovskii and X. Wan, A stochastic modelling methodology based on weighted Wiener chaos and Malliavin calculus, Proc. Nat,l Acad. Sci. USA 106 (2009) 14189-14194.
    • (2009) Proc. Nat,l Acad. Sci. USA , vol.106 , pp. 14189-14194
    • Karniadakis, G.E.1    Rozovskii, B.L.2    Wan, X.3
  • 18
    • 0011970475 scopus 로고
    • Lectures on elliptic and parabolic equations in hölder spaces
    • Amer. Math. Soc
    • N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, Vol.12 (Amer. Math. Soc., 1991).
    • (1991) Graduate Studies in Mathematics , vol.12
    • Krylov, N.V.1
  • 20
    • 70149090803 scopus 로고    scopus 로고
    • Stochastic partial differential equations driven by purely spatial noise
    • S. V. Lototsky and B. L. Rozovskii, Stochastic partial differential equations driven by purely spatial noise, SIAM J. Math. Anal. 41 (2009) 1295-1322.
    • (2009) SIAM J. Math. Anal , vol.41 , pp. 1295-1322
    • Lototsky, S.V.1    Rozovskii, B.L.2
  • 21
    • 33750304037 scopus 로고    scopus 로고
    • A lattice scheme for stochastic partial differential equations of elliptic type in dimension d ? 4
    • T. Martínez and M. Sanz-Soĺe, A lattice scheme for stochastic partial differential equations of elliptic type in dimension d ? 4, Appl. Math. Optim. 54 (2006) 343-368.
    • (2006) Appl. Math. Optim , vol.54 , pp. 343-368
    • Martínez, T.1    Sanz-Soĺe, M.2
  • 22
    • 85072868060 scopus 로고    scopus 로고
    • Stochastic calculus for fractional brownian motion and related processes
    • Springer-Verlag
    • Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics, Vol.1929 (Springer-Verlag, 2008).
    • (2008) Lecture Notes in Mathematics , vol.1929
    • Mishura, Y.1
  • 24
    • 0034562433 scopus 로고    scopus 로고
    • Integration questions related to fractional Brownian motion
    • V. Pipiras and M. S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Th. Relat. Fields 118 (2000) 251-291.
    • (2000) Probab. Th. Relat. Fields , vol.118 , pp. 251-291
    • Pipiras, V.1    Taqqu, M.S.2
  • 25
    • 21244485939 scopus 로고    scopus 로고
    • Continuous martingales and Brownian Motion
    • 3rd edn. Springer-Verlag
    • D. Revuz and M. Yor, Continuous martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Vol.293, 3rd edn. (Springer-Verlag, 2005).
    • (2005) Grundlehren der Mathematischen Wissenschaften , vol.293
    • Revuz, D.1    Yor, M.2
  • 27
    • 67349259392 scopus 로고    scopus 로고
    • Mild solutions for a class of fractional SPDEs and their sample paths
    • M. Sanz-Soĺe and P. Vuillermot, Mild solutions for a class of fractional SPDEs and their sample paths, J. Evol. Eqns. 9 (2009) 235-265.
    • (2009) J. Evol. Eqns , vol.9 , pp. 235-265
    • Sanz-Soĺe, M.1    Vuillermot, P.2
  • 28
    • 0003303493 scopus 로고
    • Nonlinear functional analysis and its applications
    • Springer Verlag
    • E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B, Nonlinear Monotone Operators (Springer Verlag, 1990).
    • (1990) II/B, Nonlinear Monotone Operators
    • Zeidler, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.