메뉴 건너뛰기




Volumn 26, Issue 1, 2010, Pages 1-25

Automatic complexity reduction in reinforcement learning

Author keywords

Complexity reduction; Reinforcement learning; Spectral graph theory

Indexed keywords

ACTION SEQUENCES; COMPLEXITY REDUCTION; DECOMPOSITION ALGORITHM; DIMENSION REDUCTION; DYNAMIC STATE; HIGH DIMENSIONALITY; LEARNING PROCESS; NORMALIZED GRAPH LAPLACIAN; SCALE-UP; SPECTRAL ANALYSIS; SPECTRAL GRAPH THEORY; STATE REPRESENTATION; STATE SPACE; SUB-PROBLEMS; SUBTASKS;

EID: 76349120621     PISSN: 08247935     EISSN: 14678640     Source Type: Journal    
DOI: 10.1111/j.1467-8640.2009.00350.x     Document Type: Article
Times cited : (11)

References (23)
  • 2
    • 84898960325 scopus 로고    scopus 로고
    • Programmable reinforcement learning agents
    • MIT Press, Cambridge, MA
    • Andre, D., and S. Russell. 2001. Programmable reinforcement learning agents. In Advances in Neural Information Processing Systems 13. MIT Press, Cambridge, MA, pp. 1019 1025.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 1019-1025
    • Andre, D.1    Russell, S.2
  • 3
    • 0141988716 scopus 로고    scopus 로고
    • Recent advances in hierarchical reinforcement learning
    • Barto, A. G., and S. Mahadevan. 2003. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13 : 341 379.
    • (2003) Discrete Event Dynamic Systems , vol.13 , pp. 341-379
    • Barto, A.G.1    Mahadevan, S.2
  • 4
    • 20344362744 scopus 로고
    • A lower bound for the smallest eigenvalue of the Laplacian
    • Princeton University Press, Princeton, NJ
    • Cheeger, J. 1970. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969). Princeton University Press, Princeton, NJ, pp. 195 199.
    • (1970) Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969). , pp. 195-199
    • Cheeger, J.1
  • 6
    • 0002278788 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning with the MAXQ value function decomposition
    • Dietterich, T. 2000. Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research, 13 : 227 303.
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 227-303
    • Dietterich, T.1
  • 7
    • 0004782095 scopus 로고    scopus 로고
    • Learning hierarchical control structure for multiple tasks and changing environments
    • MIT Press, Cambridge, MA
    • Digney, B. 1998. Learning hierarchical control structure for multiple tasks and changing environments. In Proceedings of the Fifth Conference on the Simulation of Adaptive Behavior. MIT Press, Cambridge, MA, pp. 321 330.
    • (1998) InProceedings of the Fifth Conference on the Simulation of Adaptive Behavior , pp. 321-330
    • Digney, B.1
  • 10
    • 33750705246 scopus 로고    scopus 로고
    • Causal graph based decomposition of factored MDPs
    • Jonsson, A., and A. Barto. 2006. Causal graph based decomposition of factored MDPs. Journal of Machine Learning Research, 7 : 2259 2301.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2259-2301
    • Jonsson, A.1    Barto, A.2
  • 11
    • 33646365064 scopus 로고    scopus 로고
    • Learning recursive control programs from problem solving
    • Langley, P., and D. Choi. 2006. Learning recursive control programs from problem solving. Journal of Machine Learning Research, 7 : 439 518.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 439-518
    • Langley, P.1    Choi, D.2
  • 12
    • 35748957806 scopus 로고    scopus 로고
    • Proto-value functions: A Laplacian framework for learning representation and control in Markov decision processes
    • Mahadevan, S., and M. Maggioni. 2007. Proto-value functions: A Laplacian framework for learning representation and control in Markov decision processes. Journal of Machine Learning Research, 8 : 2169 2231.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 2169-2231
    • Mahadevan, S.1    Maggioni, M.2
  • 17
    • 84898956770 scopus 로고    scopus 로고
    • Reinforcement learning with hierarchies of machines
    • MIT Press, Cambridge, MA
    • Parr, R., and S. Russell. 1998. Reinforcement learning with hierarchies of machines. In Advances in Neural Information Processing Systems 10, MIT Press, Cambridge, MA, pp. 1043 1049.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 1043-1049
    • Parr, R.1    Russell, S.2
  • 22
    • 0033170372 scopus 로고    scopus 로고
    • Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
    • Sutton, R. S., D. Precup, and S. P. Singh. 1999. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112 : 181 211.
    • (1999) Artificial Intelligence , vol.112 , pp. 181-211
    • Sutton, R.S.1    Precup, D.2    Singh, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.