-
1
-
-
0003515463
-
-
Prentice-Hall, Englewood Cliffs, Upper Saddle River, NJ
-
Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, Upper Saddle River, NJ.
-
(1993)
Network Flows: Theory, Algorithms, and Applications
-
-
Ahuja, R.K.1
Magnanti, T.L.2
Orlin, J.B.3
-
2
-
-
84898960325
-
Programmable reinforcement learning agents
-
MIT Press, Cambridge, MA
-
Andre, D., and S. Russell. 2001. Programmable reinforcement learning agents. In Advances in Neural Information Processing Systems 13. MIT Press, Cambridge, MA, pp. 1019 1025.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 1019-1025
-
-
Andre, D.1
Russell, S.2
-
3
-
-
0141988716
-
Recent advances in hierarchical reinforcement learning
-
Barto, A. G., and S. Mahadevan. 2003. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13 : 341 379.
-
(2003)
Discrete Event Dynamic Systems
, vol.13
, pp. 341-379
-
-
Barto, A.G.1
Mahadevan, S.2
-
4
-
-
20344362744
-
A lower bound for the smallest eigenvalue of the Laplacian
-
Princeton University Press, Princeton, NJ
-
Cheeger, J. 1970. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969). Princeton University Press, Princeton, NJ, pp. 195 199.
-
(1970)
Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969).
, pp. 195-199
-
-
Cheeger, J.1
-
6
-
-
0002278788
-
Hierarchical reinforcement learning with the MAXQ value function decomposition
-
Dietterich, T. 2000. Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research, 13 : 227 303.
-
(2000)
Journal of Artificial Intelligence Research
, vol.13
, pp. 227-303
-
-
Dietterich, T.1
-
7
-
-
0004782095
-
Learning hierarchical control structure for multiple tasks and changing environments
-
MIT Press, Cambridge, MA
-
Digney, B. 1998. Learning hierarchical control structure for multiple tasks and changing environments. In Proceedings of the Fifth Conference on the Simulation of Adaptive Behavior. MIT Press, Cambridge, MA, pp. 321 330.
-
(1998)
InProceedings of the Fifth Conference on the Simulation of Adaptive Behavior
, pp. 321-330
-
-
Digney, B.1
-
9
-
-
84861670983
-
Abstraction discovery from irrelevant state variables
-
Professional Book Center, Denver, CO
-
Jong, N. K., and P. Stone. 2005. Abstraction discovery from irrelevant state variables. In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence. Professional Book Center, Denver, CO, pp. 752 757.
-
(2005)
InProceedings of the Nineteenth International Joint Conference on Artificial Intelligence
, pp. 752-757
-
-
Jong, N.K.1
Stone, P.2
-
10
-
-
33750705246
-
Causal graph based decomposition of factored MDPs
-
Jonsson, A., and A. Barto. 2006. Causal graph based decomposition of factored MDPs. Journal of Machine Learning Research, 7 : 2259 2301.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2259-2301
-
-
Jonsson, A.1
Barto, A.2
-
11
-
-
33646365064
-
Learning recursive control programs from problem solving
-
Langley, P., and D. Choi. 2006. Learning recursive control programs from problem solving. Journal of Machine Learning Research, 7 : 439 518.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 439-518
-
-
Langley, P.1
Choi, D.2
-
12
-
-
35748957806
-
Proto-value functions: A Laplacian framework for learning representation and control in Markov decision processes
-
Mahadevan, S., and M. Maggioni. 2007. Proto-value functions: A Laplacian framework for learning representation and control in Markov decision processes. Journal of Machine Learning Research, 8 : 2169 2231.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 2169-2231
-
-
Mahadevan, S.1
Maggioni, M.2
-
13
-
-
14344250635
-
Dynamic abstraction in reinforcement learning via clustering
-
ACM Press, New York
-
Mannor, S., I. Menache, A. Hoze, and U. Klein. 2004. Dynamic abstraction in reinforcement learning via clustering. In Proceedings of the Twenty-First International Conference on Machine Learning. ACM Press, New York, pp. 560 567.
-
(2004)
InProceedings of the Twenty-First International Conference on Machine Learning
, pp. 560-567
-
-
Mannor, S.1
Menache, I.2
Hoze, A.3
Klein, U.4
-
15
-
-
56449130136
-
Automatic discovery and transfer of MAXQ hierarchies
-
ACM Press, New York
-
Mehta, N., S. Ray, P. Tadepalli, and T. Dietterich. 2008. Automatic discovery and transfer of MAXQ hierarchies. In Proceedings of the Twenty-Fifth International Conference on Machine Learning. ACM Press, New York, pp. 648 655.
-
(2008)
InProceedings of the Twenty-Fifth International Conference on Machine Learning
, pp. 648-655
-
-
Mehta, N.1
Ray, S.2
Tadepalli, P.3
Dietterich, T.4
-
16
-
-
84945250000
-
Q-Cut-dynamic discovery of sub-goals in reinforcement learning
-
LNAI 2430. Springer, Heidelberg
-
Menache, I., S. Mannor, and N. Shimkin. 2002. Q-Cut-dynamic discovery of sub-goals in reinforcement learning. In Proceedings of the Thirteenth European Conference on Machine Learning. LNAI 2430. Springer, Heidelberg, pp. 295 306.
-
(2002)
InProceedings of the Thirteenth European Conference on Machine Learning
, pp. 295-306
-
-
Menache, I.1
Mannor, S.2
Shimkin, N.3
-
17
-
-
84898956770
-
Reinforcement learning with hierarchies of machines
-
MIT Press, Cambridge, MA
-
Parr, R., and S. Russell. 1998. Reinforcement learning with hierarchies of machines. In Advances in Neural Information Processing Systems 10, MIT Press, Cambridge, MA, pp. 1043 1049.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 1043-1049
-
-
Parr, R.1
Russell, S.2
-
18
-
-
34547982545
-
Analyzing feature generation for value-function approximation
-
ACM Press, New York
-
Parr, R., C. Painter-Wakefield, L. Li, and M. Littman. 2007. Analyzing feature generation for value-function approximation. In Proceedings of the Twenty-Fourth International Conference on Machine Learning. ACM Press, New York, pp. 737 744.
-
(2007)
InProceedings of the Twenty-Fourth International Conference on Machine Learning
, pp. 737-744
-
-
Parr, R.1
Painter-Wakefield, C.2
Li, L.3
Littman, M.4
-
20
-
-
31844447221
-
Identifying useful subgoals in reinforcement learning by local graph partitioning
-
ACM Press, New York
-
Şimşek, Ö., A. P. Wolfe, and A.G. Barto. 2005. Identifying useful subgoals in reinforcement learning by local graph partitioning. In Proceedings of the Twenty-Second International Conference on Machine Learning. ACM Press, New York, pp. 816 823.
-
(2005)
InProceedings of the Twenty-Second International Conference on Machine Learning
, pp. 816-823
-
-
Şimşek, Ö.1
Wolfe, A.P.2
Barto, A.G.3
-
22
-
-
0033170372
-
Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
-
Sutton, R. S., D. Precup, and S. P. Singh. 1999. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112 : 181 211.
-
(1999)
Artificial Intelligence
, vol.112
, pp. 181-211
-
-
Sutton, R.S.1
Precup, D.2
Singh, S.P.3
|