-
1
-
-
33646183865
-
-
10.1088/0305-4470/39/18/010
-
H. Shima and Y. Sakaniwa, J. Phys. A 39, 4921 (2006). 10.1088/0305-4470/39/18/010
-
(2006)
J. Phys. A
, vol.39
, pp. 4921
-
-
Shima, H.1
Sakaniwa, Y.2
-
2
-
-
42749104596
-
-
10.1088/1742-5468/2006/08/P08017
-
H. Shima and Y. Sakaniwa, J. Stat. Mech. (2006) P08017. 10.1088/1742-5468/2006/08/P08017
-
J. Stat. Mech.
, vol.2006
, pp. 08017
-
-
Shima, H.1
Sakaniwa, Y.2
-
3
-
-
58149215763
-
-
10.1103/PhysRevE.78.061119
-
R. Krcmar, T. Iharagi, A. Gendiar, and T. Nishino, Phys. Rev. E 78, 061119 (2008). 10.1103/PhysRevE.78.061119
-
(2008)
Phys. Rev. e
, vol.78
, pp. 061119
-
-
Krcmar, R.1
Iharagi, T.2
Gendiar, A.3
Nishino, T.4
-
4
-
-
68949174093
-
-
10.1103/PhysRevE.80.021103
-
Y. Sakaniwa and H. Shima, Phys. Rev. E 80, 021103 (2009). 10.1103/PhysRevE.80.021103
-
(2009)
Phys. Rev. e
, vol.80
, pp. 021103
-
-
Sakaniwa, Y.1
Shima, H.2
-
5
-
-
79051469752
-
-
10.1209/0295-5075/79/26002
-
S. K. Baek, P. Minnhagen, and B. J. Kim, EPL 79, 26002 (2007). 10.1209/0295-5075/79/26002
-
(2007)
EPL
, vol.79
, pp. 26002
-
-
Baek, S.K.1
Minnhagen, P.2
Kim, B.J.3
-
7
-
-
33750859625
-
-
10.1016/j.physleta.2006.07.009
-
W. A. Moura-Melo, A. R. Pereira, L. A. S. Mól, and A. S. T. Pires, Phys. Lett. A 360, 472 (2007). 10.1016/j.physleta.2006.07.009
-
(2007)
Phys. Lett. A
, vol.360
, pp. 472
-
-
Moura-Melo, W.A.1
Pereira, A.R.2
Mól, L.A.S.3
Pires, A.S.T.4
-
8
-
-
42949145438
-
-
10.1103/PhysRevE.77.041123
-
A. Gendiar, R. Krcmar, K. Ueda, and T. Nishino, Phys. Rev. E 77, 041123 (2008). 10.1103/PhysRevE.77.041123
-
(2008)
Phys. Rev. e
, vol.77
, pp. 041123
-
-
Gendiar, A.1
Krcmar, R.2
Ueda, K.3
Nishino, T.4
-
9
-
-
68949103544
-
-
10.1103/PhysRevE.80.011133
-
S. K. Baek, P. Minnhagen, H. Shima, and B. J. Kim, Phys. Rev. E 80, 011133 (2009). 10.1103/PhysRevE.80.011133
-
(2009)
Phys. Rev. e
, vol.80
, pp. 011133
-
-
Baek, S.K.1
Minnhagen, P.2
Shima, H.3
Kim, B.J.4
-
12
-
-
0347947115
-
-
10.1103/PhysRevLett.91.237204
-
N. Park, M. Yoon, S. Berber, J. Ihm, E. Osawa, and D. Tománek, Phys. Rev. Lett. 91, 237204 (2003). 10.1103/PhysRevLett.91.237204
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 237204
-
-
Park, N.1
Yoon, M.2
Berber, S.3
Ihm, J.4
Osawa, E.5
Tománek, D.6
-
16
-
-
21144479129
-
-
10.1088/0305-4470/26/7/015
-
M. C. Marques, J. Phys. A 26, 1559 (1993). 10.1088/0305-4470/26/7/015
-
(1993)
J. Phys. A
, vol.26
, pp. 1559
-
-
Marques, M.C.1
-
19
-
-
34547369687
-
-
10.1103/PhysRevE.75.061110
-
W. Kwak, J.-S. Yang, J.-I. Sohn, and I.-M. Kim, Phys. Rev. E 75, 061110 (2007). 10.1103/PhysRevE.75.061110
-
(2007)
Phys. Rev. e
, vol.75
, pp. 061110
-
-
Kwak, W.1
Yang, J.-S.2
Sohn, J.-I.3
Kim, I.-M.4
-
25
-
-
33749583345
-
-
10.1142/S0129183106008972;
-
F. W. S. Lima, Int. J. Mod. Phys. C 17, 1257 (2006) 10.1142/ S0129183106008972
-
(2006)
Int. J. Mod. Phys. C
, vol.17
, pp. 1257
-
-
Lima, F.W.S.1
-
29
-
-
76249127300
-
-
Note that to facilitate comparisons we select the lattice size N as the scaling variable rather than the more common linear dimension L for the Ising model. If we measure the critical exponents in terms of L instead of N= L2, then 1/ν=1 and β/ν=0.125.
-
Note that to facilitate comparisons we select the lattice size N as the scaling variable rather than the more common linear dimension L for the Ising model. If we measure the critical exponents in terms of L instead of N= L2, then 1/ν=1 and β/ν=0.125.
-
-
-
-
30
-
-
33751008062
-
-
10.1103/PhysRevE.74.056108
-
P. Holme and M. E. J. Newman, Phys. Rev. E 74, 056108 (2006). 10.1103/PhysRevE.74.056108
-
(2006)
Phys. Rev. e
, vol.74
, pp. 056108
-
-
Holme, P.1
Newman, M.E.J.2
-
33
-
-
0000036280
-
-
10.1016/S0370-1573(00)00127-7
-
K. Binder and E. Luijten, Phys. Rep. 344, 179 (2001). 10.1016/S0370-1573(00)00127-7
-
(2001)
Phys. Rep.
, vol.344
, pp. 179
-
-
Binder, K.1
Luijten, E.2
-
34
-
-
76249083982
-
-
The local configuration energy in Ref. is defined as E [σi] =- σi S (j Ωi σj), where S (x) and Ωi are the same as defined in Eq. 1. The global configuration energy is obtained from summing the local configuration energy over all the sites.
-
The local configuration energy in Ref. is defined as E [σi] =- σi S (j Ωi σj), where S (x) and Ωi are the same as defined in Eq.1. The global configuration energy is obtained from summing the local configuration energy over all the sites.
-
-
-
|