메뉴 건너뛰기




Volumn 42, Issue 2, 2010, Pages 741-749

Bias properties of Bayesian statistics in finite mixture of negative binomial regression models in crash data analysis

Author keywords

Bayesian summary statistics; Bias; Finite mixture model; Heterogeneity; Negative binomial

Indexed keywords

BAYESIAN; BAYESIAN STATISTICS; BIAS PROPERTIES; CRASH DATA; DATA SETS; DISPERSION PARAMETERS; EMPIRICAL RESULTS; FINITE MIXTURE MODELS; FINITE MIXTURES; INFORMATIVE PRIORS; MEAN VALUES; NEGATIVE BINOMIAL; NEGATIVE BINOMIAL REGRESSION MODEL; NON-INFORMATIVE PRIOR; SAMPLE SIZES; SIMULATION RESULT; SIMULATION STUDIES; SMALL SAMPLE SIZE; SMALL SAMPLES; STATISTICAL MODELS; SUMMARY STATISTIC; TWO-COMPONENT; UNOBSERVED HETEROGENEITY;

EID: 76049105420     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2009.11.002     Document Type: Article
Times cited : (69)

References (31)
  • 1
    • 85010934744 scopus 로고    scopus 로고
    • Likelihood and Bayesian analysis of mixtures
    • Aitkin M. Likelihood and Bayesian analysis of mixtures. Statistical Modelling 1 4 (2001) 287-304
    • (2001) Statistical Modelling , vol.1 , Issue.4 , pp. 287-304
    • Aitkin, M.1
  • 2
    • 57849139673 scopus 로고    scopus 로고
    • A note on modeling vehicle accident frequencies with random-parameters count models
    • Anastasopoulos P., and Mannering F.L. A note on modeling vehicle accident frequencies with random-parameters count models. Accident Analysis and Prevention 41 1 (2009) 153-159
    • (2009) Accident Analysis and Prevention , vol.41 , Issue.1 , pp. 153-159
    • Anastasopoulos, P.1    Mannering, F.L.2
  • 3
    • 8744307994 scopus 로고    scopus 로고
    • Multimodal inference: understanding AIC and BIC in model selection
    • Burnham K., and Anderson D. Multimodal inference: understanding AIC and BIC in model selection. Sociological Methods Research 33 2 (2004) 261-304
    • (2004) Sociological Methods Research , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.1    Anderson, D.2
  • 8
    • 76049113537 scopus 로고    scopus 로고
    • Analyzing different parameterizations of the varying dispersion parameter as a function of segment length
    • Geedipally S.R., Lord D., and Park B.-J. Analyzing different parameterizations of the varying dispersion parameter as a function of segment length. Transportation Research Record 2103 (2009) 108-118
    • (2009) Transportation Research Record , vol.2103 , pp. 108-118
    • Geedipally, S.R.1    Lord, D.2    Park, B.-J.3
  • 9
    • 0035497764 scopus 로고    scopus 로고
    • Overdispersion in modeling accidents on road sections and in empirical Bayes estimation
    • Hauer E. Overdispersion in modeling accidents on road sections and in empirical Bayes estimation. Accident Analysis and Prevention 33 6 (2001) 799-808
    • (2001) Accident Analysis and Prevention , vol.33 , Issue.6 , pp. 799-808
    • Hauer, E.1
  • 10
    • 0000159540 scopus 로고
    • A method for minimizing the impact of distributional assumptions in econometric models for duration data
    • Heckman J.J., and Singer B. A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica 52 2 (1984) 271-320
    • (1984) Econometrica , vol.52 , Issue.2 , pp. 271-320
    • Heckman, J.J.1    Singer, B.2
  • 11
    • 0035476879 scopus 로고    scopus 로고
    • Identification of sites for road accident remedial work by Bayesien statistical methods: an example of uncertain inference
    • Heydecker B.G., and Wu J. Identification of sites for road accident remedial work by Bayesien statistical methods: an example of uncertain inference. Advances in Engineering Software 32 10 (2001) 859-869
    • (2001) Advances in Engineering Software , vol.32 , Issue.10 , pp. 859-869
    • Heydecker, B.G.1    Wu, J.2
  • 13
    • 22544479764 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • Jasra A., Holmes C.C., and Stephens D.A. Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 20 1 (2005) 50-67
    • (2005) Statistical Science , vol.20 , Issue.1 , pp. 50-67
    • Jasra, A.1    Holmes, C.C.2    Stephens, D.A.3
  • 15
    • 84936016001 scopus 로고
    • Nonparametric maximum likelihood estimation of a mixing distribution
    • Laird N. Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association 73 364 (1978) 805-811
    • (1978) Journal of the American Statistical Association , vol.73 , Issue.364 , pp. 805-811
    • Laird, N.1
  • 16
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator
    • Lewis S.M., and Raftery A.E. Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator. Journal of the American Statistical Association 92 438 (1997) 648-655
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.438 , pp. 648-655
    • Lewis, S.M.1    Raftery, A.E.2
  • 17
    • 33747691081 scopus 로고    scopus 로고
    • Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter
    • Lord D. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Accident Analysis and Prevention 38 4 (2006) 751-766
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.4 , pp. 751-766
    • Lord, D.1
  • 18
    • 43949096566 scopus 로고    scopus 로고
    • Effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter of Poisson-gamma models for modeling motor vehicle crashes: a Bayesian perspective
    • Lord D., and Miranda-Moreno L.F. Effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter of Poisson-gamma models for modeling motor vehicle crashes: a Bayesian perspective. Safety Science 46 5 (2008) 751-770
    • (2008) Safety Science , vol.46 , Issue.5 , pp. 751-770
    • Lord, D.1    Miranda-Moreno, L.F.2
  • 19
    • 0030138885 scopus 로고    scopus 로고
    • A comprehensive methodology for the fitting of predictive accident models
    • Maher M., and Summersgill I. A comprehensive methodology for the fitting of predictive accident models. Accident Analysis and Prevention 28 6 (1996) 281-296
    • (1996) Accident Analysis and Prevention , vol.28 , Issue.6 , pp. 281-296
    • Maher, M.1    Summersgill, I.2
  • 20
    • 60449098299 scopus 로고    scopus 로고
    • Markov switching negative binomial models: an application to vehicle accident frequencies
    • Malyshkina N.V., Mannering F.L., and Tarko A.P. Markov switching negative binomial models: an application to vehicle accident frequencies. Accident Analysis and Prevention 41 2 (2009) 217-226
    • (2009) Accident Analysis and Prevention , vol.41 , Issue.2 , pp. 217-226
    • Malyshkina, N.V.1    Mannering, F.L.2    Tarko, A.P.3
  • 22
    • 1842428184 scopus 로고    scopus 로고
    • Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods
    • Miaou S.-P., and Lord D. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transportation Research Record 1840 (2003) 31-40
    • (2003) Transportation Research Record , vol.1840 , pp. 31-40
    • Miaou, S.-P.1    Lord, D.2
  • 24
    • 56749184111 scopus 로고    scopus 로고
    • Adjustment for the maximum likelihood estimate of the negative binomial dispersion parameter
    • Park B.-J., and Lord D. Adjustment for the maximum likelihood estimate of the negative binomial dispersion parameter. Transportation Research Record 2061 (2008) 9-19
    • (2008) Transportation Research Record , vol.2061 , pp. 9-19
    • Park, B.-J.1    Lord, D.2
  • 25
    • 67349194666 scopus 로고    scopus 로고
    • Application of finite mixture models for vehicle crash data analysis
    • Park B.-J., and Lord D. Application of finite mixture models for vehicle crash data analysis. Accident Analysis and Prevention 41 4 (2009) 683-691
    • (2009) Accident Analysis and Prevention , vol.41 , Issue.4 , pp. 683-691
    • Park, B.-J.1    Lord, D.2
  • 28
    • 33746878290 scopus 로고    scopus 로고
    • Prior specification in Bayesian statistics: three cautionary tales
    • Van Dongen S. Prior specification in Bayesian statistics: three cautionary tales. Journal of Theoretical Biology 242 7 (2006) 90-100
    • (2006) Journal of Theoretical Biology , vol.242 , Issue.7 , pp. 90-100
    • Van Dongen, S.1
  • 31
    • 31044448952 scopus 로고    scopus 로고
    • Bayesian methodology incorporating expert judgment for ranking countermeasure effectiveness under uncertainty: example applied to at grade railroad crossings in Korea
    • Washington S., and Oh J. Bayesian methodology incorporating expert judgment for ranking countermeasure effectiveness under uncertainty: example applied to at grade railroad crossings in Korea. Accident Analysis and Prevention 38 2 (2006) 234-247
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.2 , pp. 234-247
    • Washington, S.1    Oh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.