메뉴 건너뛰기




Volumn 47, Issue 6, 2009, Pages 686-692

Arsenite oxidation by a facultative chemolithotrophic bacterium SDB1 isolated from mine tailing

Author keywords

Arsenite oxidation; Chemolithotroph; Mine tailing; Sinorhizobium Ensifer

Indexed keywords

ALPHAPROTEOBACTERIA; BACTERIA (MICROORGANISMS); ENSIFER; NEGIBACTERIA; SINORHIZOBIUM;

EID: 75949123255     PISSN: 12258873     EISSN: 12258873     Source Type: Journal    
DOI: 10.1007/s12275-009-0279-3     Document Type: Article
Times cited : (18)

References (35)
  • 1
    • 0027104536 scopus 로고
    • The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase
    • Anderson, G. L., J. Williams, and R. Hille. 1992. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J. Biol. Chem. 267, 23674-23682.
    • (1992) J. Biol. Chem. , vol.267 , pp. 23674-23682
    • Anderson, G.L.1    Williams, J.2    Hille, R.3
  • 2
    • 20644441998 scopus 로고    scopus 로고
    • Arsenic contamination of ground water and drinking water in Vietnam: A human health threat
    • Berg, M., H. C. Tran, T. C. Nguyen, H. V. Pham, R. Schertenleib, and W. Giger. 2001. Arsenic contamination of ground water and drinking water in Vietnam: a human health threat. Environ. Sci. Technol. 35, 2621-2626.
    • (2001) Environ. Sci. Technol. , vol.35 , pp. 2621-2626
    • Berg, M.1    Tran, H.C.2    Nguyen, T.C.3    Pham, H.V.4    Schertenleib, R.5    Giger, W.6
  • 3
    • 12744279197 scopus 로고    scopus 로고
    • Metal contents in the ground water of Sahebgunj district, Jharkhand, India, with special reference to arsenic
    • Bhattacharjee, S., S. Chakravarty, S. Maity, V. Dureja, and K. K. Gupta. 2005. Metal contents in the ground water of Sahebgunj district, Jharkhand, India, with special reference to arsenic. Chemosphere 58, 1203-1217.
    • (2005) Chemosphere , vol.58 , pp. 1203-1217
    • Bhattacharjee, S.1    Chakravarty, S.2    Maity, S.3    Dureja, V.4    Gupta, K.K.5
  • 4
    • 0242569387 scopus 로고    scopus 로고
    • Arsenic-a review. Part II: Oxidation of arsenic and its removal in water treatment
    • Bissen, M. and F. H. Frimmel. 2003. Arsenic-a review. Part II: Oxidation of arsenic and its removal in water treatment. Acta. Hydrochim. Hydrobiol. 31, 97-107.
    • (2003) Acta. Hydrochim. Hydrobiol. , vol.31 , pp. 97-107
    • Bissen, M.1    Frimmel, F.H.2
  • 5
    • 0001844215 scopus 로고
    • Arsenic mobilization and bioavailability in soils
    • J. O. Nriagu (Ed.), New York, N.Y., USA: John Wiley & Sons, Inc.
    • Bumbla, D. K. and R. F. Keefer. 1994. Arsenic mobilization and bioavailability in soils, p. 51-82. In J. O. Nriagu (ed.), Arsenic in the Environment. I. Cycling and Characterization. John Wiley & Sons, Inc., New York, N. Y., USA.
    • (1994) Arsenic in the Environment. I. Cycling and Characterization , pp. 51-82
    • Bumbla, D.K.1    Keefer, R.F.2
  • 6
    • 33846232753 scopus 로고    scopus 로고
    • Revealing threshold criteria of biostimulation for dye-laden wastewater treatment using immobilized cell systems
    • Chen, B. Y. 2007. Revealing threshold criteria of biostimulation for dye-laden wastewater treatment using immobilized cell systems. Process Biochem. 42, 158-166.
    • (2007) Process Biochem. , vol.42 , pp. 158-166
    • Chen, B.Y.1
  • 7
    • 24944521541 scopus 로고    scopus 로고
    • Immobilized cell fixed-bed bioreactor for wastewater decolorization
    • Chen, B. Y., S. Y. Chen, and J. S. Chang. 2005. Immobilized cell fixed-bed bioreactor for wastewater decolorization. Process Biochem. 40, 3434-3440.
    • (2005) Process Biochem. , vol.40 , pp. 3434-3440
    • Chen, B.Y.1    Chen, S.Y.2    Chang, J.S.3
  • 8
    • 33845184777 scopus 로고
    • Arsenic speciation in the environment
    • Cullen, W. R. and K. J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89, 713-764.
    • (1989) Chem. Rev. , vol.89 , pp. 713-764
    • Cullen, W.R.1    Reimer, K.J.2
  • 9
    • 35948998879 scopus 로고    scopus 로고
    • Autecology of an arsenite chemolithotroph: Sulfide constrains on function and distribution in a geothermal spring
    • D'Imperio, S., C. R. Lehr, M. Breary, and T. R. McDermott. 2007. Autecology of an arsenite chemolithotroph: sulfide constrains on function and distribution in a geothermal spring. Appl. Environ. Microbiol. 73, 7067-7074.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 7067-7074
    • D'Imperio, S.1    Lehr, C.R.2    Breary, M.3    McDermott, T.R.4
  • 10
    • 0038777055 scopus 로고
    • Inorganic energy sources for chemolithotrophic and mixotrophic bacteria
    • Ehrlich, H. L. 1978. Inorganic energy sources for chemolithotrophic and mixotrophic bacteria. Geomicrobiol. J. 1, 65-83.
    • (1978) Geomicrobiol. J. , vol.1 , pp. 65-83
    • Ehrlich, H.L.1
  • 11
    • 0037972795 scopus 로고    scopus 로고
    • Bacterial oxidation of As(III) compounds
    • W. T. FrankenbergerJr. (Ed.), New York, N.Y., USA: Marcel Dekker, Inc.
    • Ehrlich, H. L. 2002. Bacterial oxidation of As(III) compounds, p. 313-327. In W. T. Frankenberger, Jr. (ed.), Environmental Chemistry of Arsenic. Marcel Dekker, Inc., New York, N. Y., USA.
    • (2002) Environmental Chemistry of Arsenic , pp. 313-327
    • Ehrlich, H.L.1
  • 12
    • 0037937588 scopus 로고    scopus 로고
    • Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinobacter turnirae
    • Elibol, M. and A. R. Moreira. 2003. Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinobacter turnirae. Process Biochem. 38, 1445-1450.
    • (2003) Process Biochem. , vol.38 , pp. 1445-1450
    • Elibol, M.1    Moreira, A.R.2
  • 13
    • 0001376658 scopus 로고
    • Separation of arsenic(III) and arsenic(V) in ground waters by ion-exchange
    • Ficklin, W. H. 1983. Separation of arsenic(III) and arsenic(V) in ground waters by ion-exchange. Talanta 30, 371-373.
    • (1983) Talanta , vol.30 , pp. 371-373
    • Ficklin, W.H.1
  • 15
    • 0000921673 scopus 로고
    • Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank
    • Green, H. H. 1918. Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. S. Afr. J. Sci. 14, 465-467.
    • (1918) S. Afr. J. Sci. , vol.14 , pp. 465-467
    • Green, H.H.1
  • 18
    • 0345283133 scopus 로고    scopus 로고
    • Application of biological processes for the removal of arsenic from groundwaters
    • Katsoyiannis, I. A. and A. I. Zouboulis. 2004. Application of biological processes for the removal of arsenic from groundwaters. Wat. Res. 38, 17-26.
    • (2004) Wat. Res. , vol.38 , pp. 17-26
    • Katsoyiannis, I.A.1    Zouboulis, A.I.2
  • 19
    • 0034968480 scopus 로고    scopus 로고
    • Separation of inorganic arsenic species in groundwater using ion exchange method
    • Kim, M. J. 2001. Separation of inorganic arsenic species in groundwater using ion exchange method. Bull. Environ. Contam. Toxicol. 67, 46-51.
    • (2001) Bull. Environ. Contam. Toxicol. , vol.67 , pp. 46-51
    • Kim, M.J.1
  • 20
    • 0347382328 scopus 로고    scopus 로고
    • Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation
    • Lee, Y., I. H. Um, and J. Yoon. 2003. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ. Sci. Technol. 37, 5750-5756.
    • (2003) Environ. Sci. Technol. , vol.37 , pp. 5750-5756
    • Lee, Y.1    Um, I.H.2    Yoon, J.3
  • 21
    • 8844221236 scopus 로고    scopus 로고
    • Alteration to lake trophic status as a means to control arsenic mobility in a mine-impacted lake
    • Martin, A. J. and R. F. Pedersen. 2004. Alteration to lake trophic status as a means to control arsenic mobility in a mine-impacted lake. Wat. Res. 381, 4415-4423.
    • (2004) Wat. Res. , vol.381 , pp. 4415-4423
    • Martin, A.J.1    Pedersen, R.F.2
  • 22
    • 33748192518 scopus 로고    scopus 로고
    • Laboratory based approaches for arsenic remediation from contaminated water: Recent developments
    • Mondal, P., C. B. Majumder, and B. Mohanty. 2006. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J. Hazard. Materials B137, 464-479.
    • (2006) J. Hazard. Materials , vol.B137 , pp. 464-479
    • Mondal, P.1    Majumder, C.B.2    Mohanty, B.3
  • 23
    • 0030955484 scopus 로고    scopus 로고
    • Ecotoxicology of arsenic in marine environment
    • Neff, J. M. 1997. Ecotoxicology of arsenic in marine environment. Environ. Toxicol. Chem. 16, 917-927.
    • (1997) Environ. Toxicol. Chem. , vol.16 , pp. 917-927
    • Neff, J.M.1
  • 24
    • 0035656384 scopus 로고    scopus 로고
    • Isolation and characterization of a novel As(V)-reducing bacterium: Implications for arsenic mobilization and the genus Desulfitobacterium
    • Niggemyer, A., S. Spring, E. Stackebrandt, and R. F. Rosenzweig. 2001. Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl. Environ. Microbiol. 67, 5568-5580.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 5568-5580
    • Niggemyer, A.1    Spring, S.2    Stackebrandt, E.3    Rosenzweig, R.F.4
  • 25
    • 0036794790 scopus 로고    scopus 로고
    • Anaerobic oxidation of arsenite in Mono Lake Water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1
    • Oremland, R. S., S. E. Hoeft, J. M. Santini, N. Bano, R. A. Hollibaugh, and J. T. Hollibaugh. 2002. Anaerobic oxidation of arsenite in Mono Lake Water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795-4802.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 4795-4802
    • Oremland, R.S.1    Hoeft, S.E.2    Santini, J.M.3    Bano, N.4    Hollibaugh, R.A.5    Hollibaugh, J.T.6
  • 26
    • 0017175979 scopus 로고
    • Oxidation of arsenite to arsenate by Alcaligenes faecalis
    • Phillips, S. E. and M. L. Taylor. 1976. Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl. Environ. Microbiol. 32, 392-399.
    • (1976) Appl. Environ. Microbiol. , vol.32 , pp. 392-399
    • Phillips, S.E.1    Taylor, M.L.2
  • 28
  • 29
    • 0033964544 scopus 로고    scopus 로고
    • Arsenic speciation: Involvement in evaluation of environmental impact caused by mine wastes
    • Roussel, C., H. Bril, and A. Fernandez. 2000. Arsenic speciation: involvement in evaluation of environmental impact caused by mine wastes. J. Environ. Qual. 29, 182-188.
    • (2000) J. Environ. Qual. , vol.29 , pp. 182-188
    • Roussel, C.1    Bril, H.2    Fernandez, A.3
  • 30
    • 0033987849 scopus 로고    scopus 로고
    • A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: Phylogenetic, physiological, and preliminary biochemical studies
    • Santini, J. M., L. I. Sly, R. D. Schnagl, and J. M. Macy. 2000. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol. 66, 92-97.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 92-97
    • Santini, J.M.1    Sly, L.I.2    Schnagl, R.D.3    Macy, J.M.4
  • 31
    • 0036187032 scopus 로고    scopus 로고
    • New arsenite-oxidizing bacteria isolated from Australian gold mining environments-phylogenetic relationships
    • Santini, J. M., L. I. Sly, A. Wen, D. Comrie, P. De Wulf-Durand, and J. M. Macy. 2002a. New arsenite-oxidizing bacteria isolated from Australian gold mining environments-phylogenetic relationships. Geomicrobiol. J. 19, 67-76.
    • (2002) Geomicrobiol. J. , vol.19 , pp. 67-76
    • Santini, J.M.1    Sly, L.I.2    Wen, A.3    Comrie, D.4    de Wulf-Durand, P.5    Macy, J.M.6
  • 32
    • 53949119462 scopus 로고    scopus 로고
    • Characteristics of newly discovered arsenite-oxidizing bacteria
    • W. T. FrankenbergerJr. (Ed.), New York, N.Y., USA: Marcel Dekker, Inc.
    • Santini, J. M., R. N. vanden Hoven, and J. M. Macy. 2002b. Characteristics of newly discovered arsenite-oxidizing bacteria, p. 329-342. In W. T. Frankenberger, Jr. (ed.), Environmental Chemistry of Arsenic. Marcel Dekker, Inc., New York, N. Y., USA.
    • (2002) Environmental Chemistry of Arsenic , pp. 329-342
    • Santini, J.M.1    vanden Hoven, R.N.2    Macy, J.M.3
  • 33
    • 0023287616 scopus 로고
    • Immobilized cells: A review of recent literature
    • Scott, C. D. 1987. Immobilized cells: a review of recent literature. Enzyme Microb. Technol. 9, 66-73.
    • (1987) Enzyme Microb. Technol. , vol.9 , pp. 66-73
    • Scott, C.D.1
  • 35
    • 2642547186 scopus 로고    scopus 로고
    • Arsenite oxidation by the heterotroph Hydrogenophaga sp. Str. NT-14: The arsenite oxidase and its physiological electron acceptor
    • vanden Hoven, R. N. and J. M. Santini. 2004. Arsenite oxidation by the heterotroph Hydrogenophaga sp. Str. NT-14: The arsenite oxidase and its physiological electron acceptor. Biochim. Biophys. Acta 1656, 148-155.
    • (2004) Biochim. Biophys. Acta , vol.1656 , pp. 148-155
    • vanden Hoven, R.N.1    Santini, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.