메뉴 건너뛰기




Volumn 73, Issue 4-6, 2010, Pages 895-902

Biologically inspired feature manifold for gait recognition

Author keywords

Biologically inspired feature; Gait; Linear subspace; Manifold leaning

Indexed keywords

BIOLOGICALLY INSPIRED; DATA SETS; FINGER PRINT; GAIT FEATURES; GAIT RECOGNITION; HUMAN GAIT; HUMAN VISUAL CORTEX; LABEL INFORMATION; LINEAR SUBSPACE; LOCAL GEOMETRY; MANIFOLD LEARNING; PALMPRINTS; PHYSICAL CHARACTERISTICS; PSYCHOLOGICAL STATE; SOUTH FLORIDA; SUBSPACE LEARNING; USER COOPERATION;

EID: 75749133541     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.09.017     Document Type: Article
Times cited : (30)

References (25)
  • 2
    • 36849063074 scopus 로고    scopus 로고
    • Using biologically inspired features for face processing
    • Meyers E., and Wolf L. Using biologically inspired features for face processing. International Journal of Computer Vision 76 (2008) 93-104
    • (2008) International Journal of Computer Vision , vol.76 , pp. 93-104
    • Meyers, E.1    Wolf, L.2
  • 5
    • 75749156705 scopus 로고    scopus 로고
    • Biologically inspired feature manifold for scene classification
    • D. Song, D. Tao, Biologically inspired feature manifold for scene classification. IEEE Transactions on Image Processing, 18 (2009) 1-30.
    • (2009) IEEE Transactions on Image Processing , vol.18 , pp. 1-30
    • Song, D.1    Tao, D.2
  • 8
    • 0019152630 scopus 로고
    • Neocognitron: a self organizing neural network model for a mechanism for pattern recognition unaffected by shift in position
    • Fukushima K. Neocognitron: a self organizing neural network model for a mechanism for pattern recognition unaffected by shift in position. Biological Cybernetics 36 4 (1980) 193-202
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 10
    • 75749152693 scopus 로고    scopus 로고
    • Detailed look at scale and translation invariance in a hierarchical neural model of visual object recognition
    • Massachusetts Institute of Technology
    • R. Schneider, M. Riesenhuber, Detailed look at scale and translation invariance in a hierarchical neural model of visual object recognition. AI Memo 2002-011/CBCL Memo218, Massachusetts Institute of Technology, 2002.
    • (2002) AI Memo 2002-011/CBCL Memo218
    • Schneider, R.1    Riesenhuber, M.2
  • 11
    • 75749139822 scopus 로고    scopus 로고
    • Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex
    • Massachusetts Institute of Technology
    • T. Serre, M. Riesenhuber, Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex. AI Memo 2004-017/CBCL Memo239, Massachusetts Institute of Technology, 2004.
    • (2004) AI Memo 2004-017/CBCL Memo239
    • Serre, T.1    Riesenhuber, M.2
  • 13
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber M., and Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience 2 11 (1999) 1019-1025
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.