메뉴 건너뛰기




Volumn 43, Issue 5, 2010, Pages 1984-1992

A new convex objective function for the supervised learning of single-layer neural networks

Author keywords

Convex optimization; Global optimum; Incremental learning; Least squares; Single layer neural networks; Supervised learning method

Indexed keywords

GLOBAL OPTIMUM; INCREMENTAL LEARNING; LEAST SQUARE; SINGLE LAYER; SINGLE-LAYER NEURAL NETWORKS; SUPERVISED LEARNING METHODS;

EID: 75749106957     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.11.024     Document Type: Article
Times cited : (37)

References (26)
  • 3
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madeline and backpropagation
    • B. Widrow, M.A. Lehr, 30 years of adaptive neural networks: perceptron, madeline and backpropagation, in: Proceedings of the IEEE, vol. 78, 1990, pp. 1415-1442.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 5
    • 0002932077 scopus 로고
    • Backpropagation can give rise to spurious local minima even for networks without hidden layers
    • Sontag E., and Sussmann H.J. Backpropagation can give rise to spurious local minima even for networks without hidden layers. Complex Systems 3 (1989) 91-106
    • (1989) Complex Systems , vol.3 , pp. 91-106
    • Sontag, E.1    Sussmann, H.J.2
  • 6
    • 33747595237 scopus 로고
    • Geometrical interpretation of the back-propagation algorithm for the perceptron
    • Budinich M., and Milotti E. Geometrical interpretation of the back-propagation algorithm for the perceptron. Physica A 185 (1992) 369-377
    • (1992) Physica A , vol.185 , pp. 369-377
    • Budinich, M.1    Milotti, E.2
  • 7
    • 85156194133 scopus 로고    scopus 로고
    • Exponentially many local minima for single neurons
    • Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds), The MIT Press, Cambridge, MA
    • Auer P., Hebster M., and Warmuth M.K. Exponentially many local minima for single neurons. In: Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds). Advances in Neural Information Processing Systems vol. 8 (1996), The MIT Press, Cambridge, MA 316-322
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 316-322
    • Auer, P.1    Hebster, M.2    Warmuth, M.K.3
  • 8
    • 0025839203 scopus 로고
    • Back propagation separates where perceptrons do
    • Sontag E., and Sussmann H.J. Back propagation separates where perceptrons do. Neural Networks 4 (1991) 243-249
    • (1991) Neural Networks , vol.4 , pp. 243-249
    • Sontag, E.1    Sussmann, H.J.2
  • 10
    • 0030106852 scopus 로고    scopus 로고
    • On a natural homotopy between linear and nonlinear single-layer networks
    • Coetzee F.M., and Stonick V.L. On a natural homotopy between linear and nonlinear single-layer networks. IEEE Transactions on Neural Networks 7 2 (1996) 307-317
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.2 , pp. 307-317
    • Coetzee, F.M.1    Stonick, V.L.2
  • 11
    • 0030104771 scopus 로고    scopus 로고
    • On the uniqueness of weights in single layer perceptrons
    • Coetzee F.M., and Stonick V.L. On the uniqueness of weights in single layer perceptrons. IEEE Transactions on Neural Networks 7 2 (1996) 318-325
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.2 , pp. 318-325
    • Coetzee, F.M.1    Stonick, V.L.2
  • 12
    • 0035575628 scopus 로고    scopus 로고
    • Relative loss bounds for multidimensional regression problems
    • Kivinen J., and Warmuth M.K. Relative loss bounds for multidimensional regression problems. Machine Learning 45 (2001) 301-329
    • (2001) Machine Learning , vol.45 , pp. 301-329
    • Kivinen, J.1    Warmuth, M.K.2
  • 14
    • 0027224761 scopus 로고
    • A learning algorithm for multilayered neural networks based on linear least squares problems
    • Biegler-Konig F., and Barnmann F. A learning algorithm for multilayered neural networks based on linear least squares problems. Neural Networks 6 (1993) 127-131
    • (1993) Neural Networks , vol.6 , pp. 127-131
    • Biegler-Konig, F.1    Barnmann, F.2
  • 15
    • 0039610507 scopus 로고    scopus 로고
    • Exploring and comparing the best "direct methods" for the efficient training of MLP-networks
    • Di Martino M., Fanelli S., and Protasi M. Exploring and comparing the best "direct methods" for the efficient training of MLP-networks. IEEE Transactions on Neural Networks 7 6 (1996) 1497-1502
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1497-1502
    • Di Martino, M.1    Fanelli, S.2    Protasi, M.3
  • 16
    • 0031193520 scopus 로고    scopus 로고
    • A new method in determining the initial weights of feedforward neural networks
    • Yam Y., and Chow T. A new method in determining the initial weights of feedforward neural networks. Neurocomputing 16 1 (1997) 23-32
    • (1997) Neurocomputing , vol.16 , Issue.1 , pp. 23-32
    • Yam, Y.1    Chow, T.2
  • 17
    • 0042525850 scopus 로고    scopus 로고
    • An improved algorithm for learning long-term dependency problems in adaptive processing of data structures
    • Cho S.-Y., Chi Z., Siu W.-C., and Tsoi A.C. An improved algorithm for learning long-term dependency problems in adaptive processing of data structures. IEEE Transactions on Neural Networks 14 4 (2003) 781-793
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.4 , pp. 781-793
    • Cho, S.-Y.1    Chi, Z.2    Siu, W.-C.3    Tsoi, A.C.4
  • 20
    • 0021450223 scopus 로고
    • Complexity of solving linear systems in different models of computation
    • Bojanczyk A. Complexity of solving linear systems in different models of computation. SIAM Journal on Numerical Analysis 21 3 (1984) 591-603
    • (1984) SIAM Journal on Numerical Analysis , vol.21 , Issue.3 , pp. 591-603
    • Bojanczyk, A.1
  • 24
    • 75749131177 scopus 로고    scopus 로고
    • O.L. Mangasarian, R. Ramakrishnan, Data Mining Institute, Computer Sciences Department, University of Wisconsin 〈http://www.cs.wisc.edu/dmi〉, 1999.
    • O.L. Mangasarian, R. Ramakrishnan, Data Mining Institute, Computer Sciences Department, University of Wisconsin 〈http://www.cs.wisc.edu/dmi〉, 1999.
  • 25
    • 0035789613 scopus 로고    scopus 로고
    • Proximal support vector machine classifiers
    • F. Provost, R. Srikant Eds, August 26-29, San Francisco, CA, Association for Computing Machinery, New York
    • G. Fung, O.L. Mangasarian, Proximal support vector machine classifiers, in: F. Provost, R. Srikant (Eds.), Proceedings KDD-2001: Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA, Association for Computing Machinery, New York, 2001, pp. 77-86.
    • (2001) Proceedings KDD-2001: Knowledge Discovery and Data Mining , pp. 77-86
    • Fung, G.1    Mangasarian, O.L.2
  • 26
    • 75749135773 scopus 로고    scopus 로고
    • A new feature of the statistical pattern recognition toolbox
    • S. Scherer Ed, Österreichische Computer Gesellschaft
    • V. Franc, V. Hlaváč, A new feature of the statistical pattern recognition toolbox, in: S. Scherer (Ed.), Computer Vision, Computer Graphics and Photogrammetry-A Common Viewpoint, Österreichische Computer Gesellschaft, 2001, pp. 143-150 〈http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html〉.
    • (2001) Computer Vision, Computer Graphics and Photogrammetry-A Common Viewpoint , pp. 143-150
    • Franc, V.1    Hlaváč, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.