메뉴 건너뛰기




Volumn 21, Issue 1, 2010, Pages 14-33

Clone selection algorithm to solve preference multi-objective optimization

Author keywords

dominance; Artificial immune system; Preference multi objective optimization; Preference rank

Indexed keywords

ARTIFICIAL IMMUNE SYSTEM; CLASSICAL ALGORITHMS; CLONE SELECTION ALGORITHMS; IMMUNE MEMORY; MULTI-OBJECTIVE PROBLEM; PARETO FRONT; PARETO-OPTIMAL FRONT; PREFERENCE INFORMATION; SELECTION PRESSURES; SPEED-UPS; TIME COMPLEXITY;

EID: 75349089836     PISSN: 10009825     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1001.2010.03551     Document Type: Article
Times cited : (43)

References (33)
  • 2
    • 33644978280 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization: A historical view of the field
    • Coello Coello CA. Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36.
    • (2006) IEEE Computational Intelligence Magazine , vol.1 , Issue.1 , pp. 28-36
    • Coello Coello, C.A.1
  • 5
    • 19644377877 scopus 로고    scopus 로고
    • A novel clustering based on the immune evolutionary algorithm
    • in Chinese
    • Liu J, Zhong WC, Liu F, Jiao LC. A novel clustering based on the immune evolutionary algorithm. Acta Electronica Sinica, 2001, 29(12A): 1868-1872 (in Chinese with English abstract).
    • (2001) Acta Electronica Sinica , vol.29 , Issue.12 A , pp. 1868-1872
    • Liu, J.1    Zhong, W.C.2    Liu, F.3    Jiao, L.C.4
  • 6
    • 31444446724 scopus 로고    scopus 로고
    • An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery
    • Zhong YF, Zhang LP, Huang B, Li PX. An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery. IEEE Trans. on Geoscience and Remote Sensing, 2006, 44(2): 420-431.
    • (2006) IEEE Trans. on Geoscience and Remote Sensing , vol.44 , Issue.2 , pp. 420-431
    • Zhong, Y.F.1    Zhang, L.P.2    Huang, B.3    Li, P.X.4
  • 9
    • 0033208122 scopus 로고    scopus 로고
    • Immune network simulations in multicriterion design
    • Yoo J, Hajela P. Immune network simulations in multicriterion design. Structural Optimization, 1999, 18(2-3): 85-94.
    • (1999) Structural Optimization , vol.18 , Issue.2-3 , pp. 85-94
    • Yoo, J.1    Hajela, P.2
  • 10
    • 17444430405 scopus 로고    scopus 로고
    • Solving multi-objective optimization problem using an artificial immune system
    • Coello Coello CA, Cortés NC. Solving multi-objective optimization problem using an artificial immune system. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190.
    • (2005) Genetic Programming and Evolvable Machines , vol.6 , Issue.2 , pp. 163-190
    • Coello Coello, C.A.1    Cortés, N.C.2
  • 11
    • 24644461154 scopus 로고    scopus 로고
    • A class of Pareto archived evolution strategy algorithms using immune inspired operators for ab-initio protein structure prediction
    • Rothlauf F, et al., ed., LNCS 3449, Lausanne: Springer-Verlag
    • Cutello V, Narzisi G, Nicosia G. A class of Pareto archived evolution strategy algorithms using immune inspired operators for ab-initio protein structure prediction. In: Rothlauf F, et al., ed. Applications of Evolutionary Computing, Evo-Workshops 2005. LNCS 3449, Lausanne: Springer-Verlag, 2005. 54-63.
    • (2005) Applications of Evolutionary Computing, Evo-Workshops 2005 , pp. 54-63
    • Cutello, V.1    Narzisi, G.2    Nicosia, G.3
  • 13
    • 47749112044 scopus 로고    scopus 로고
    • Multi-Objective immune algorithm with Pareto-optimal neighbor-based selection
    • Gong MG, Jiao LC, Du HF, Bo LF. Multi-Objective immune algorithm with Pareto-optimal neighbor-based selection. Evolutionary Computation, 2008, 16(2): 225-255.
    • (2008) Evolutionary Computation , vol.16 , Issue.2 , pp. 225-255
    • Gong, M.G.1    Jiao, L.C.2    Du, H.F.3    Bo, L.F.4
  • 15
    • 84866638341 scopus 로고    scopus 로고
    • Light beam search based multi-objective optimization using evolutionary algorithms
    • Technical Report, No.2007005, Kanpur: Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology
    • Deb K, Kummar A. Light beam search based multi-objective optimization using evolutionary algorithms. Technical Report, No.2007005, Kanpur: Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology, 2007.
    • (2007)
    • Deb, K.1    Kummar, A.2
  • 16
    • 0036715683 scopus 로고    scopus 로고
    • Combining convergence and diversity in evolutionary multi-objective optimization
    • Laumanns M, Thiele L, Deb K, Zitzler E. Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation, 2002, 10(3): 263-282.
    • (2002) Evolutionary Computation , vol.10 , Issue.3 , pp. 263-282
    • Laumanns, M.1    Thiele, L.2    Deb, K.3    Zitzler, E.4
  • 17
    • 0033102253 scopus 로고    scopus 로고
    • The light beam search approach - An overview of methodology and applications
    • Jaszkiewicz A, Slowinski R. The light beam search approach-an overview of methodology and applications. European Journal of Operation Research, 1999, 113(2): 300-314.
    • (1999) European Journal of Operation Research , vol.113 , Issue.2 , pp. 300-314
    • Jaszkiewicz, A.1    Slowinski, R.2
  • 18
    • 75349109662 scopus 로고    scopus 로고
    • Towards an estimation of nadir objective vector using hybrid evolutionary and local search approaches
    • Technical Report, No.2007009, Kanpur: Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology
    • Deb K, Miettinen K, Chaudhuri S. Towards an estimation of nadir objective vector using hybrid evolutionary and local search approaches. Technical Report, No.2007009, Kanpur: Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology, 2007.
    • (2007)
    • Deb, K.1    Miettinen, K.2    Chaudhuri, S.3
  • 19
    • 0033672413 scopus 로고    scopus 로고
    • Handling preferences in evolutionary multi-objective optimization: A survey
    • Piscataway: IEEE Service Center
    • Coello Coello CA. Handling preferences in evolutionary multi-objective optimization: A survey. In: Proc. of the Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 2000, 1: 30-37. http://ieeexplore.ieee.org/Xplore/dynhome.jsp
    • (2000) Proc. of the Congress on Evolutionary Computation , vol.1 , pp. 30-37
    • Coello Coello, C.A.1
  • 22
    • 0004701031 scopus 로고    scopus 로고
    • Including real-life preferences in genetic algorithms to improve optimization of production schedules
    • Glasgow: IEE
    • Shaw KJ, Fleming P J. Including real-life preferences in genetic algorithms to improve optimization of production schedules. In: Proc. of the Genetic Algorithms in Engineering Systems Innovations and Applications. Glasgow: IEE, 1997. 239-244. http://ieeexplore.ieee.org/Xplore/dynhome.jsp
    • (1997) Proc. of the Genetic Algorithms in Engineering Systems Innovations and Applications , pp. 239-244
    • Shaw, K.J.1    Fleming, P.J.2
  • 23
    • 33947224691 scopus 로고    scopus 로고
    • An investigation on preference order ranking scheme for multi-objective evolutionary optimization
    • Pierro FD, Khu ST, Savic DA. An investigation on preference order ranking scheme for multi-objective evolutionary optimization. IEEE Trans. on Evolutionary Computation, 2007, 11(1): 17-45.
    • (2007) IEEE Trans. on Evolutionary Computation , vol.11 , Issue.1 , pp. 17-45
    • Pierro, F.D.1    Khu, S.T.2    Savic, D.A.3
  • 24
    • 0345337896 scopus 로고    scopus 로고
    • Genetic algorithm based multi-objective optimization and conceptual engineering design
    • Washington: IEEE
    • Cvetković D, Parmee IC. Genetic algorithm based multi-objective optimization and conceptual engineering design. In: Congress on Evolutionary Computation. Washington: IEEE, 1999, 1: 29-36. http://ieeexplore.ieee.org/Xplore/dynhome.jsp
    • (1999) Congress on Evolutionary Computation , vol.1 , pp. 29-36
    • Cvetković, D.1    Parmee, I.C.2
  • 25
    • 33947670047 scopus 로고    scopus 로고
    • Toward a quick computation of well-spread Pareto-optimal solutions
    • Fonseca CM, et al., ed, LNCS 2632, Faro: Springer-Verlag
    • Deb K, Mohan M, Mishra S. Toward a quick computation of well-spread Pareto-optimal solutions. In: Fonseca CM, et al., ed. Evolutionary Multi-Criterion Optimization, the 2nd Int'l Conf. LNCS 2632, Faro: Springer-Verlag, 2003. 222-236.
    • (2003) Evolutionary Multi-Criterion Optimization, the 2nd Int'l Conf , pp. 222-236
    • Deb, K.1    Mohan, M.2    Mishra, S.3
  • 26
    • 37349072773 scopus 로고    scopus 로고
    • An immune clonal algorithm for dynamic multi-objective optimization
    • in Chinese
    • Shang RH, Jiao LC, Gong MG, Ma WP. An immune clonal algorithm for dynamic multi-objective optimization. Journal of Software, 2007, 18(11): 2700-2711 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/2700.htm
    • (2007) Journal of Software , vol.18 , Issue.11 , pp. 2700-2711
    • Shang, R.H.1    Jiao, L.C.2    Gong, M.G.3    Ma, W.P.4
  • 27
    • 0003808330 scopus 로고    scopus 로고
    • Multi-Objective evolutionary algorithms: Classification, analyzes, and new innovations
    • Wright-Patterson AFB: Air Force Institute of Technology
    • Van Veldhuizen DA. Multi-Objective evolutionary algorithms: Classification, analyzes, and new innovations[Ph.D. Thesis]. Wright-Patterson AFB: Air Force Institute of Technology, 1999.
    • (1999)
    • van Veldhuizen, D.A.1
  • 28
    • 0033676661 scopus 로고    scopus 로고
    • On measuring multiobjective evolutionary algorithm performance
    • Piscataway: IEEE Press
    • Van Veldhuizen DA, Lamont GB. On measuring multiobjective evolutionary algorithm performance. In: Congress on Evolutionary Computation 2000. Piscataway: IEEE Press, 2000, 1: 204-211. http://ieeexplore.ieee.org/Xplore/dynhome.jsp
    • (2000) Congress on Evolutionary Computation 2000 , vol.1 , pp. 204-211
    • van Veldhuizen, D.A.1    Lamont, G.B.2
  • 29
    • 75349101570 scopus 로고    scopus 로고
    • Multi-Objective evolutionary algorithms: A comparative case study and the strength Pareto approach
    • Zitzler E, Thiele L. Multi-Objective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. on Evolutionary Computations, 1999, 6(2): 182-197.
    • (1999) IEEE Trans. on Evolutionary Computations , vol.6 , Issue.2 , pp. 182-197
    • Zitzler, E.1    Thiele, L.2
  • 31
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multi-objective evolutionary algorithms: Empirical results
    • Zitzler E, Deb K, Thiele L. Comparison of multi-objective evolutionary algorithms: Empirical results. Evolutionary Computation, 2000, 8(2): 173-195.
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 32
    • 84901420886 scopus 로고    scopus 로고
    • Scalable multi-objective optimization test problems
    • Piscataway: IEEE Press
    • Deb K, Thiele L, Laumanns M, Zitzler E. Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation 2002. Piscataway: IEEE Press, 2002, 1: 825-830. http://ieeexplore.ieee.org/Xplore/dynhome.jsp
    • (2002) Congress on Evolutionary Computation 2002 , vol.1 , pp. 825-830
    • Deb, K.1    Thiele, L.2    Laumanns, M.3    Zitzler, E.4
  • 33
    • 35248887077 scopus 로고    scopus 로고
    • Performance scaling of multi-objective evolutionary algorithms
    • Fonseca CM, et al., ed., LNCS 2632, Faro: Springer-Verlag
    • Khare V, Yao X, Deb K. Performance scaling of multi-objective evolutionary algorithms. In: Fonseca CM, et al., ed. Evolutionary Multi-Criterion Optimization, the 2nd Int'l Conf., EMO 2003. LNCS 2632, Faro: Springer-Verlag, 2003. 376-390.
    • (2003) Evolutionary Multi-Criterion Optimization, the 2nd Int'l Conf., EMO 2003 , pp. 376-390
    • Khare, V.1    Yao, X.2    Deb, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.