메뉴 건너뛰기




Volumn , Issue , 2009, Pages 899-908

Clustering web queries

Author keywords

Clustering; Clustering evaluation; Query intent detection

Indexed keywords

CLUSTERING EVALUATION; CLUSTERING METHODS; CLUSTERING QUALITY; CLUSTERING WEB; CLUSTERINGS; DATA SETS; INTENT DETECTION; LABELINGS; MULTIPLE CLUSTERINGS; SEARCH ENGINE RESULTS; WEB SEARCH ENGINES; WEIGHTING SCHEME;

EID: 74549208545     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1645953.1646069     Document Type: Conference Paper
Times cited : (4)

References (35)
  • 6
    • 0142030258 scopus 로고    scopus 로고
    • A taxomony of web search
    • A. Broder. A taxomony of web search. ACM SIGIR Forum, 36:3-10, 2002.
    • (2002) ACM SIGIR Forum , vol.36 , pp. 3-10
    • Broder, A.1
  • 11
    • 0012951994 scopus 로고    scopus 로고
    • Spectral min-max cut for graph partitioning and data clustering
    • Technical Report TR-2001-XX, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA
    • C. Ding, X. He, H. Zha, M. Gu, and H. Simon. Spectral min-max cut for graph partitioning and data clustering. Technical Report TR-2001-XX, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA., 2001.
    • (2001)
    • Ding, C.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.5
  • 15
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. In ACM SIGIR 1999, 1999.
    • (1999) ACM SIGIR 1999
    • Hofmann, T.1
  • 16
  • 19
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypothesis and its relationship to the Schwarz criterion
    • R. E. Kass and L. Wasserman. A reference Bayesian test for nested hypothesis and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90(431):928-934, 1995.
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.431 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 26
  • 28
    • 0002096830 scopus 로고    scopus 로고
    • Document clustering using word clusters via the information bottleneck method
    • N. Slonim and N. Tishby. Document clustering using word clusters via the information bottleneck method. In ACM SIGIR 2000, pages 208-215, 2000.
    • (2000) In ACM SIGIR 2000 , pp. 208-215
    • Slonim, N.1    Tishby, N.2
  • 29
    • 0004069901 scopus 로고
    • W. H. Freeman and Company, San Francisco
    • R. R. Snokal and P. H. Sneath. Numerical Taxonomy, pages 230-234. W. H. Freeman and Company, San Francisco, 1973.
    • (1973) Numerical Taxonomy , pp. 230-234
    • Snokal, R.R.1    Sneath, P.H.2
  • 32
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • W. Xu, X. Liu, Y. Gong. Document clustering based on non-negative matrix factorization. In ACM SIGIR 2003, pages 267-273, 2003.
    • (2003) In ACM SIGIR 2003 , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 33
    • 85153245440 scopus 로고    scopus 로고
    • Determining the Number of Clusters Using the Weighted Gap Statistic
    • M. Yan and K. Ye. Determining the Number of Clusters Using the Weighted Gap Statistic. Biometrics 63.
    • Biometrics , pp. 63
    • Yan, M.1    Ye, K.2
  • 34
    • 0012981871 scopus 로고    scopus 로고
    • Generalized k-harmonic means - boosting in unsupervised learning
    • Technical Report HPL-1999-124, Hewlett-Packard Labs
    • B. Zhang, M. Hsu, and U. Dayal. Generalized k-harmonic means - boosting in unsupervised learning. Technical Report HPL-1999-124, Hewlett-Packard Labs, 1999.
    • (1999)
    • Zhang, B.1    Hsu, M.2    Dayal, U.3
  • 35
    • 74549144907 scopus 로고    scopus 로고
    • Evaluation of hierarchical clustering algorithms for document datasets
    • Y. Zhao and G. Karypis. Evaluation of hierarchical clustering algorithms for document datasets. In Data Mining and Knowledge Discovery, 2002.
    • (2002) Data Mining and Knowledge Discovery
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.