메뉴 건너뛰기




Volumn , Issue , 2009, Pages 505-512

Learning to rank with a novel kernel perceptron method

Author keywords

Learning to rank; Perceptron; Web search

Indexed keywords

DECISION BOUNDARY; FEATURE SPACE; INSTANCE RANKING; KERNEL FUNCTION; LARGE DATASETS; LEARNING TO RANK; MACHINE LEARNING COMMUNITIES; ON-LINE ALGORITHMS; ONLINE LEARNING; PAGERANK; PERCEPTRON; RANK LEARNING; RANKBOOST; RANKING ALGORITHM; STATE-OF-THE-ART METHODS; TRAINING DATASET; WEB PAGE; WEB SEARCHES; WEB STRUCTURES;

EID: 74549184206     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1645953.1646018     Document Type: Conference Paper
Times cited : (6)

References (21)
  • 1
    • 0003780986 scopus 로고    scopus 로고
    • The pagerank citation ranking: Bring order to the web
    • Technical report, Stanford University
    • Page, L., Brin, S., Motwani, R., and Winograd, T. 1998. The pagerank citation ranking: Bring order to the web. Technical report, Stanford University.
    • (1998)
    • Page, L.1    Brin, S.2    Motwani, R.3    Winograd, T.4
  • 5
    • 60949111976 scopus 로고    scopus 로고
    • Learning to Rank with Pairwise Regularized Least-Squares
    • Workshop on Learning to Rank for Information Retrieval
    • Panikkaia, T., Tsivtsiadze, E., Airola, A., Boberg, J., and Salakoski, T. 2007. Learning to Rank with Pairwise Regularized Least-Squares. In Proceedings of SIGIR 2007 Workshop on Learning to Rank for Information Retrieval.
    • (2007) Proceedings of SIGIR
    • Panikkaia, T.1    Tsivtsiadze, E.2    Airola, A.3    Boberg, J.4    Salakoski, T.5
  • 6
    • 84903820282 scopus 로고    scopus 로고
    • Learning to Rank Documents for Ad-Retrieval with Regularized Models
    • Workshop on Learning to Rank for Information Retrieval
    • Cao, G., Nie, J., Si, L., and Bai, J. 2007. Learning to Rank Documents for Ad-Retrieval with Regularized Models. In Proceedings of SIGIR 2007 Workshop on Learning to Rank for Information Retrieval.
    • (2007) Proceedings of SIGIR
    • Cao, G.1    Nie, J.2    Si, L.3    Bai, J.4
  • 7
    • 84887859544 scopus 로고    scopus 로고
    • Learning to Rank for Information Retrieval using genetic Programming
    • Workshop on Learning to Rank for Information Retrieval
    • Yeh, J., Lin, J., Ke, H., and Yang, W. 2007. Learning to Rank for Information Retrieval using genetic Programming. In Proceedings of SIGIR 2007 Workshop on Learning to Rank for Information Retrieval.
    • (2007) Proceedings of SIGIR
    • Yeh, J.1    Lin, J.2    Ke, H.3    Yang, W.4
  • 10
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • Thorsten Joachims, 2002. Optimizing search engines using clickthrough data. In Proceedings of the Eighth SIGKDD, 133-142.
    • (2002) Proceedings of the Eighth SIGKDD , pp. 133-142
    • Joachims, T.1
  • 11
    • 4644367942 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer, 2003. An efficient boosting algorithm for combining preferences. In J. Mach. Learn. Res., 4:933-969.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 933-969
    • Freund, Y.1    Iyer, R.2    Schapire, R.E.3    Singer, Y.4
  • 20
    • 0033645041 scopus 로고    scopus 로고
    • IR evaluation methods for retrieving highly relevant documents
    • Jarvelin, K. and Kekalainen, J. 2000. IR evaluation methods for retrieving highly relevant documents. Proceedings of SIGIR, 41-48.
    • (2000) Proceedings of SIGIR , pp. 41-48
    • Jarvelin, K.1    Kekalainen, J.2
  • 21
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of IR techniques
    • Jarvelin, K. and Kekalainen, 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans. on Information Systems, 20(4), 422-446.
    • (2002) ACM Trans. on Information Systems , vol.20 , Issue.4 , pp. 422-446
    • Jarvelin, K.1    Kekalainen2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.