메뉴 건너뛰기




Volumn 19, Issue 1, 2010, Pages 91-102

In search of best alternatives: A TOPSIS driven MCDM procedure for neural network modeling

Author keywords

Artificial neural network; Benefit criteria; Cost criteria; Minkowski distance; Multiple criteria decision making; TOPSIS

Indexed keywords


EID: 74449090260     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-009-0260-4     Document Type: Article
Times cited : (8)

References (15)
  • 1
    • 0037567435 scopus 로고    scopus 로고
    • On some aspects of data integration techniques with environmental applications
    • doi:10.1002/env.595
    • Sinha BK, Shah KR (2003) On some aspects of data integration techniques with environmental applications. Environmetrics 14: 409-416. doi: 10. 1002/env. 595.
    • (2003) Environmetrics , vol.14 , pp. 409-416
    • Sinha, B.K.1    Shah, K.R.2
  • 2
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson CW, Wilby RL (2001) Hydrological modeling using artificial neural networks. Prog Phys Geogr 25(1): 80-108.
    • (2001) Prog Phys Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 6
    • 0001338939 scopus 로고
    • A comparison of polynomial approximations and artificial neural nets as response surfaces
    • doi:10.1007/BF01743353
    • Carpenter W, Barthelemy J (1993) A comparison of polynomial approximations and artificial neural nets as response surfaces. Struct Optim 5(3): 166-174. doi: 10. 1007/BF01743353.
    • (1993) Struct Optim , vol.5 , Issue.3 , pp. 166-174
    • Carpenter, W.1    Barthelemy, J.2
  • 7
    • 0033318985 scopus 로고    scopus 로고
    • Statistical modelling of mechanical tensile properties of steels by using neural networks and multivariate data analysis
    • doi:10.2355/isijinternational.39.980
    • Dumortier C, Lehert P (1999) Statistical modelling of mechanical tensile properties of steels by using neural networks and multivariate data analysis. ISIJ Int 39(10): 980-985. doi: 10. 2355/isijinternational. 39. 980.
    • (1999) ISIJ Int , vol.39 , Issue.10 , pp. 980-985
    • Dumortier, C.1    Lehert, P.2
  • 8
    • 1842785615 scopus 로고    scopus 로고
    • Effect of galvanising parameters on spangle size investigated by data mining technique
    • doi:10.2355/isijinternational.44.129
    • Dutta M, Mukhopadhyay A, Chakrabarti S (2004) Effect of galvanising parameters on spangle size investigated by data mining technique. ISIJ Int 44(1): 129-138. doi: 10. 2355/isijinternational. 44. 129.
    • (2004) ISIJ Int , vol.44 , Issue.1 , pp. 129-138
    • Dutta, M.1    Mukhopadhyay, A.2    Chakrabarti, S.3
  • 9
    • 33645138314 scopus 로고    scopus 로고
    • A multivariate prediction model for microarray cross-hybridization
    • doi:10.1186/1471-2105-7-101
    • Chen YA, Chou C-C, Lu X, Slate EH, Peck K, Xu W, Voit EO, Almeida JS (2006) A multivariate prediction model for microarray cross-hybridization. BMC Bioinformatics 7(101): 1471-2105. doi: 10. 1186/1471-2105-7-101.
    • (2006) BMC Bioinformatics , vol.7 , Issue.101 , pp. 1471-2105
    • Chen, Y.A.1    Chou, C.-C.2    Lu, X.3    Slate, E.H.4    Peck, K.5    Xu, W.6    Voit, E.O.7    Almeida, J.S.8
  • 10
    • 0028064035 scopus 로고
    • A neural network that self-organizes to perform three operations related to principal component analysis
    • doi:10.1016/0893-6080(94)90097-3
    • Matsuoka K, Kawamoto M (1994) a neural network that self-organizes to perform three operations related to principal component analysis. Neural Netw 7(5): 753-765. doi: 10. 1016/0893-6080(94)90097-3.
    • (1994) Neural Netw , vol.7 , Issue.5 , pp. 753-765
    • Matsuoka, K.1    Kawamoto, M.2
  • 11
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal components analyser
    • doi:10.1007/BF00275687
    • Oja E (1982) A simplified neuron model as a principal components analyser. J Math Biol 15: 267-273. doi: 10. 1007/BF00275687.
    • (1982) J Math Biol , vol.15 , pp. 267-273
    • Oja, E.1
  • 12
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • doi:10.1016/0893-6080(89)90044-0
    • Sanger TD (1989) Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw 2: 459-473. doi: 10. 1016/0893-6080(89)90044-0.
    • (1989) Neural Netw , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 13
    • 0028427087 scopus 로고
    • Adaptive principal components extraction APEX and application
    • doi:10.1109/78.295198
    • Kung SY, Diamantras KI, Taur JS (1994) adaptive principal components extraction APEX and application. IEEE Trans Signal Process 42(5): 1245-1259. doi: 10. 1109/78. 295198.
    • (1994) IEEE Trans Signal Process , vol.42 , Issue.5 , pp. 1245-1259
    • Kung, S.Y.1    Diamantras, K.I.2    Taur, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.