메뉴 건너뛰기




Volumn 43, Issue 4, 2010, Pages 1346-1360

A robust dynamic niching genetic algorithm with niche migration for automatic clustering problem

Author keywords

Clustering; Genetic algorithms; Niche migration; Niching method; Remote sensing image

Indexed keywords

AUTOMATIC CLUSTERING; CLUSTER CENTERS; CLUSTER VALIDITY; CLUSTERING GENETIC ALGORITHMS; CLUSTERING METHODS; DATA SETS; DYNAMIC IDENTIFICATION; EXISTING METHOD; GENETIC CLUSTERING ALGORITHMS; MULTISPECTRAL REMOTE SENSING IMAGE; NICHING GENETIC ALGORITHM; NICHING METHODS; NUMBER OF CLUSTERS; ON DYNAMICS; OPTIMAL NUMBER; REMOTE SENSING IMAGES; ROBUST CHARACTERISTIC; SHAPE ESTIMATION; SIMILARITY FUNCTIONS; UNSUPERVISED CLASSIFICATION;

EID: 74449083009     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.10.020     Document Type: Article
Times cited : (52)

References (56)
  • 4
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithm
    • Xu R., and Wunsch D. Survey of clustering algorithm. IEEE Trans. Neural Networks 16 3 (2005) 645-678
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 6
    • 9444222978 scopus 로고
    • The application of computers to taxonomy
    • Sneath P.H.A. The application of computers to taxonomy. J. Gen. Microbiol. 17 (1957) 201-226
    • (1957) J. Gen. Microbiol. , vol.17 , pp. 201-226
    • Sneath, P.H.A.1
  • 7
    • 0000440128 scopus 로고
    • A Monte Carlo study of the recovery of cluster structure in binary data by hierarchical clustering techniques
    • Hands S., and Everitt B.S. A Monte Carlo study of the recovery of cluster structure in binary data by hierarchical clustering techniques. Multivar. Behav. Res. 22 (1987) 235-243
    • (1987) Multivar. Behav. Res. , vol.22 , pp. 235-243
    • Hands, S.1    Everitt, B.S.2
  • 8
    • 84944178665 scopus 로고
    • Hierarchical groupings to optimize an objective function
    • Ward J.H. Hierarchical groupings to optimize an objective function. J. Am. Stat. Assoc. 58 (1963) 236-244
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 9
    • 0040250697 scopus 로고
    • Identification keys and diagnostic tables: a review
    • Payne R.W., and Preece D.A. Identification keys and diagnostic tables: a review. J. R. Stat. Soc. A 143 (1980) 253-292
    • (1980) J. R. Stat. Soc. A , vol.143 , pp. 253-292
    • Payne, R.W.1    Preece, D.A.2
  • 10
    • 0020451042 scopus 로고
    • Coefficients of association and similarity based on binary (presence-absence) data: an evaluation
    • Hubálek Z. Coefficients of association and similarity based on binary (presence-absence) data: an evaluation. Biol. Rev. 57 (1982) 669-689
    • (1982) Biol. Rev. , vol.57 , pp. 669-689
    • Hubálek, Z.1
  • 11
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan G.W., and Cooper M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50 (1985) 159-179
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 13
    • 0029360028 scopus 로고
    • On cluster validity for fuzzy c-means model
    • Pal N.R., and Bezdek J.C. On cluster validity for fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3 3 (1995) 370-379
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 14
    • 0026850464 scopus 로고
    • Fitting an unknown number of lines and planes to image data through compatible cluster merging
    • Krishnapuram R., and Freg C.P. Fitting an unknown number of lines and planes to image data through compatible cluster merging. Pattern Recognition 25 4 (1992) 385-400
    • (1992) Pattern Recognition , vol.25 , Issue.4 , pp. 385-400
    • Krishnapuram, R.1    Freg, C.P.2
  • 15
    • 0029245943 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation
    • Krishnapuram R., Frigui H., and Nasraoui O. Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Trans. Fuzzy Syst. 3 1 (1995) 29-60
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.1 , pp. 29-60
    • Krishnapuram, R.1    Frigui, H.2    Nasraoui, O.3
  • 16
    • 0030242069 scopus 로고    scopus 로고
    • Gaussian mixture density modeling, decomposition and applications
    • Zhuang X., Huang Y., Palaniappan K., and Zhao Y. Gaussian mixture density modeling, decomposition and applications. IEEE Trans. Image Process. 5 9 (1996) 1293-1302
    • (1996) IEEE Trans. Image Process. , vol.5 , Issue.9 , pp. 1293-1302
    • Zhuang, X.1    Huang, Y.2    Palaniappan, K.3    Zhao, Y.4
  • 22
    • 0030189865 scopus 로고    scopus 로고
    • In search of optimal clusters using genetic algorithms
    • Murthy C.A., and Chowdhury N. In search of optimal clusters using genetic algorithms. Pattern Recognition Lett. 17 (1996) 825-832
    • (1996) Pattern Recognition Lett. , vol.17 , pp. 825-832
    • Murthy, C.A.1    Chowdhury, N.2
  • 23
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm based clustering technique
    • Maulik U., and Bandyopadhyay S. Genetic algorithm based clustering technique. Pattern Recognition 33 9 (2000) 1455-1465
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 24
    • 33745463144 scopus 로고    scopus 로고
    • RGFGA: an efficient representation and crossover for grouping genetic algorithms
    • Tucker A., Crampton J., and Swift S. RGFGA: an efficient representation and crossover for grouping genetic algorithms. Evol. Comput. 13 4 (2005) 477-499
    • (2005) Evol. Comput. , vol.13 , Issue.4 , pp. 477-499
    • Tucker, A.1    Crampton, J.2    Swift, S.3
  • 25
    • 0036798199 scopus 로고    scopus 로고
    • An evolutionary technique based on K-means algorithm for optimal clustering in RN
    • Bandyopdhyay S., and Maulik U. An evolutionary technique based on K-means algorithm for optimal clustering in RN. Inf. Sci. 146 (2002) 221-237
    • (2002) Inf. Sci. , vol.146 , pp. 221-237
    • Bandyopdhyay, S.1    Maulik, U.2
  • 28
    • 34547681969 scopus 로고    scopus 로고
    • GAPS: a clustering method using a new point symmetry-based distance measure
    • Bandyopdhyay S., and Saha S. GAPS: a clustering method using a new point symmetry-based distance measure. Pattern Recognition 40 12 (2007) 3430-3451
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3430-3451
    • Bandyopdhyay, S.1    Saha, S.2
  • 29
    • 33144460268 scopus 로고    scopus 로고
    • A genetic algorithm using hyper-quadtrees for lowdimensional K-means clustering
    • Laszlo M., and Mukherjee S. A genetic algorithm using hyper-quadtrees for lowdimensional K-means clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28 4 (2006) 533-543
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.4 , pp. 533-543
    • Laszlo, M.1    Mukherjee, S.2
  • 30
    • 35148867445 scopus 로고    scopus 로고
    • A genetic algorithm that exchanges neighboring centers for K-means clustering
    • Laszlo M., and Mukherjee S. A genetic algorithm that exchanges neighboring centers for K-means clustering. Pattern Recognition Lett. 28 (2007) 2359-2366
    • (2007) Pattern Recognition Lett. , vol.28 , pp. 2359-2366
    • Laszlo, M.1    Mukherjee, S.2
  • 31
    • 62349142182 scopus 로고    scopus 로고
    • A genetic algorithm with gene rearrangement for K-means clustering
    • D.X. Chang, X.D. Zhang, C.W. Zheng, A genetic algorithm with gene rearrangement for K-means clustering, Pattern Recognition 42 (7) (2009) 1210-1222.
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1210-1222
    • Chang, D.X.1    Zhang, X.D.2    Zheng, C.W.3
  • 32
    • 58149212260 scopus 로고
    • A variable-length genetic algorithm for clustering and classification
    • Srikanth R., George R., Warsi N., et al. A variable-length genetic algorithm for clustering and classification. Pattern Recognition Lett. 16 (1995) 789-800
    • (1995) Pattern Recognition Lett. , vol.16 , pp. 789-800
    • Srikanth, R.1    George, R.2    Warsi, N.3
  • 33
    • 0031169139 scopus 로고    scopus 로고
    • A genetic c-means clustering algorithm applied to color image quantization
    • Scheunders P. A genetic c-means clustering algorithm applied to color image quantization. Pattern Recognition 30 6 (1997) 859-866
    • (1997) Pattern Recognition , vol.30 , Issue.6 , pp. 859-866
    • Scheunders, P.1
  • 34
    • 0034819176 scopus 로고    scopus 로고
    • A genetic approach to the automatic clustering problem
    • Tseng L.Y., and Yang S.B. A genetic approach to the automatic clustering problem. Pattern Recognition 34 2 (2001) 415-424
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 415-424
    • Tseng, L.Y.1    Yang, S.B.2
  • 35
    • 0036604864 scopus 로고    scopus 로고
    • Genetic clustering for automatic evolution of clusters and application to image classification
    • Bandyopadhyay S., and Maulik U. Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognition 35 6 (2002) 1197-1208
    • (2002) Pattern Recognition , vol.35 , Issue.6 , pp. 1197-1208
    • Bandyopadhyay, S.1    Maulik, U.2
  • 36
    • 53149106965 scopus 로고    scopus 로고
    • A point symmetry-based clustering technique for automatic evolution of clusters
    • Bandyopadhyay S., and Saha S. A point symmetry-based clustering technique for automatic evolution of clusters. IEEE Trans. Knowl. Data Eng. 20 11 (2008) 1441-1457
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.11 , pp. 1441-1457
    • Bandyopadhyay, S.1    Saha, S.2
  • 38
    • 0001903624 scopus 로고
    • Genetic algorithms with sharing for multimodal function optimization
    • J.J. Grefenstette Ed, Lawrence Erlbaum, Hillsdale, NJ
    • D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function optimization, in: J.J. Grefenstette (Ed.), Genetic Algorithms and Their Applications, Lawrence Erlbaum, Hillsdale, NJ, 1987, pp. 41-49.
    • (1987) Genetic Algorithms and Their Applications , pp. 41-49
    • Goldberg, D.E.1    Richardson, J.2
  • 39
    • 0002284602 scopus 로고
    • An investigation of niche and species-formation in genetic function optimization
    • J.D. Schaffer Ed, San Mateo, CA
    • K. Deb, D.E. Goldberg, An investigation of niche and species-formation in genetic function optimization, in: J.D. Schaffer (Ed.), Proceedings of the 3rd International Conference on Genetic Algorithms, San Mateo, CA, 1989, pp. 42-50.
    • (1989) Proceedings of the 3rd International Conference on Genetic Algorithms , pp. 42-50
    • Deb, K.1    Goldberg, D.E.2
  • 40
    • 0000190905 scopus 로고
    • Searching for diverse, cooperative populations with genetic algorithms
    • Smith R.E., Forrest S., and Perelson A.S. Searching for diverse, cooperative populations with genetic algorithms. Evol. Comput. 1 2 (1992) 127-149
    • (1992) Evol. Comput. , vol.1 , Issue.2 , pp. 127-149
    • Smith, R.E.1    Forrest, S.2    Perelson, A.S.3
  • 41
    • 0001351468 scopus 로고
    • Using genetic algorithms to explore pattern recognition in the immune system
    • Forrest S., Smith R.E., Javornik B., and Perelson A.S. Using genetic algorithms to explore pattern recognition in the immune system. Evol. Comput. 1 (1993) 191-211
    • (1993) Evol. Comput. , vol.1 , pp. 191-211
    • Forrest, S.1    Smith, R.E.2    Javornik, B.3    Perelson, A.S.4
  • 42
    • 84958949201 scopus 로고    scopus 로고
    • Every niche method has its niche: Fitness sharing and implicit sharing compared
    • H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel Eds, Parallel Problem Solving from Nature-PPSN IV, Springer, Berlin, Germany
    • P. Darwen, X. Yao, Every niche method has its niche: fitness sharing and implicit sharing compared, in: H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature-PPSN IV, Lecture Notes in Computer Science, vol. 1141, Springer, Berlin, Germany, 1996, pp. 398-407.
    • (1996) Lecture Notes in Computer Science , vol.1141 , pp. 398-407
    • Darwen, P.1    Yao, X.2
  • 43
    • 0002240542 scopus 로고
    • M-estimator of location: An outline of the theory
    • D.C. Hoaglin, F. Mosteller, J.W. Tukey Eds, New York
    • C. Goodall, M-estimator of location: an outline of the theory, in: D.C. Hoaglin, F. Mosteller, J.W. Tukey (Eds.), Understanding Robust and Exploratory Data Analysis, New York, 1983, pp. 339-403.
    • (1983) Understanding Robust and Exploratory Data Analysis , pp. 339-403
    • Goodall, C.1
  • 48
    • 0036715627 scopus 로고    scopus 로고
    • A species conserving genetic algorithm for multimodal function optimization
    • Li J.P., Balazs M.E., Parks G.T., and Clarkson P.J. A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10 3 (2002) 207-234
    • (2002) Evol. Comput. , vol.10 , Issue.3 , pp. 207-234
    • Li, J.P.1    Balazs, M.E.2    Parks, G.T.3    Clarkson, P.J.4
  • 50
    • 0000401181 scopus 로고
    • A sequential niche technique for multimodal function optimization
    • Beasley D., Bull D.R., and Martin R.R. A sequential niche technique for multimodal function optimization. Evol. Comput. 1 2 (1993) 101-125
    • (1993) Evol. Comput. , vol.1 , Issue.2 , pp. 101-125
    • Beasley, D.1    Bull, D.R.2    Martin, R.R.3
  • 52
    • 0001963038 scopus 로고
    • Population size and genetic drift in fitness sharing
    • L.D. Whitley, M.D. Vose Eds
    • S.W. Mahfoud, Population size and genetic drift in fitness sharing, in: L.D. Whitley, M.D. Vose (Eds.), Proceedings of the Foundations Genetic Algorithms, 1995, pp. 185-223.
    • (1995) Proceedings of the Foundations Genetic Algorithms , pp. 185-223
    • Mahfoud, S.W.1
  • 54
    • 74449084170 scopus 로고    scopus 로고
    • 〈http://www.ics.uci.edu/mlearn/MLRepository.html〉.
  • 56
    • 0033117357 scopus 로고    scopus 로고
    • On finding the number of clusters
    • Kothari R., and Pitts D. On finding the number of clusters. Pattern Recognition Lett. 20 4 (1999) 405-416
    • (1999) Pattern Recognition Lett. , vol.20 , Issue.4 , pp. 405-416
    • Kothari, R.1    Pitts, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.