-
1
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Peter Buneman and Sushil Jajodia, editors, Washington, D.C
-
R. Agrawal, T. Imielinski, and A.N. Swami. Mining association rules between sets of items in large databases. In Peter Buneman and Sushil Jajodia, editors, SIGMOD, pages 207–216, Washington, D.C., 26–28, 1993.
-
(1993)
SIGMOD
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.N.3
-
2
-
-
0003408496
-
-
University of California, Irvine, Dept. of Information and Computer Sciences
-
C.L. Blake and C.J. Merz. UCI repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/mlrepository.html, University of California, Irvine, Dept. of Information and Computer Sciences, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
3
-
-
0031161999
-
Beyond market baskets: Generalizing association rules to correlations
-
S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing association rules to correlations. SIGMOD, pages 265–276, 1997.
-
(1997)
SIGMOD
, pp. 265-276
-
-
Brin, S.1
Motwani, R.2
Silverstein, C.3
-
4
-
-
0033877655
-
Finding interesting associations without supporting pruning
-
E. Cohen, M. Datar, S. Fujiwara, A. Gionis, R. Indyk, P. Motwani, J. Ullman, and C. Yang. Finding interesting associations without supporting pruning. In Proc. ICDE, 2000.
-
(2000)
Proc. ICDE
-
-
Cohen, E.1
Datar, M.2
Fujiwara, S.3
Gionis, A.4
Indyk, R.5
Motwani, P.6
Ullman, J.7
Yang, C.8
-
5
-
-
0003704318
-
-
University of California, Irvine, Dept. of Information and Computer Sciences
-
S. Hettich and S. D. Bay. The UCI KDD archive. http://www.ics.uci.edu/, University of California, Irvine, Dept. of Information and Computer Sciences, 1999.
-
(1999)
The UCI KDD Archive
-
-
Hettich, S.1
Bay, S.D.2
-
6
-
-
0031698969
-
Mining for strong negative associations in a large database of customer transactions
-
As. Savasere, E. Omiecinski, and S. B. Navathe. Mining for strong negative associations in a large database of customer transactions. In ICDE, pages 494–502, 1998.
-
(1998)
ICDE
, pp. 494-502
-
-
Savasere, A.S.1
Omiecinski, E.2
Navathe, S.B.3
-
8
-
-
85162588849
-
Mining association rules with item constraints
-
D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, editors, AAAI Press, 14–17
-
R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. In D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, editors, Proc. KDD, pages 67–73. AAAI Press, 14–17 1997.
-
(1997)
Proc. KDD
, pp. 67-73
-
-
Srikant, R.1
Vu, Q.2
Agrawal, R.3
-
9
-
-
0000835392
-
OPUS: An efficient admissible algorithm for unordered search
-
G. I. Webb. OPUS: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence Research, 3:431–465, 1995.
-
(1995)
Journal of Artificial Intelligence Research
, vol.3
, pp. 431-465
-
-
Webb, G.I.1
-
10
-
-
0034592782
-
Efficient search for association rules
-
G. I Webb. Efficient search for association rules. KDD, pages 99–107, 2000.
-
(2000)
KDD
, pp. 99-107
-
-
Webb, G.I.1
-
11
-
-
28444435381
-
Beyond association rules: Generalized rule discovery
-
Kluwer Academic Publishers, unpublished manuscript
-
G. I Webb and S. Zhang. Beyond association rules: Generalized rule discovery. In Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 14–17, unpublished manuscript.
-
Knowledge Discovery and Data Mining
, pp. 14-17
-
-
Webb, G.I.1
Zhang, S.2
-
12
-
-
3042700702
-
Mining both positive and negative rules
-
X. Wu, C. Zhang, and S. Zhang. Mining both positive and negative rules. ICML, pages 658–665, 2002.
-
(2002)
ICML
, pp. 658-665
-
-
Wu, X.1
Zhang, C.2
Zhang, S.3
-
14
-
-
0035788918
-
Real world performance of association rule algorithms
-
Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms. KDD, pages 401–406, 2001.
-
(2001)
KDD
, pp. 401-406
-
-
Zheng, Z.1
Kohavi, R.2
Mason, L.3
|