메뉴 건너뛰기




Volumn 2637, Issue , 2003, Pages 271-282

AGRID: An efficient algorithm for clustering large high-dimensional datasets

Author keywords

Clustering; Data mining; Dimensionality; Grid; Iso density line

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; DATA MINING; KNOWLEDGE ENGINEERING;

EID: 7444237650     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (18)
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining aplications
    • Seattle, WA, June
    • R. Agrawal, J. Gehrke, et al, "Automatic subspace clustering of high dimensional data for data mining aplications", In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'98), pp. 94-105, Seattle, WA, June 1998.
    • (1998) Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'98) , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2
  • 5
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Portland, Oregon, Aug.
    • M. Ester, H.-P. Kriegel et al, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise," in Proc.1996 Int. Conf. On Knowledge Discovery and Data Mining (KDD'96), pp. 226-231, Portland, Oregon, Aug. 1996.
    • (1996) Proc.1996 Int. Conf. on Knowledge Discovery and Data Mining (KDD'96) , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2
  • 7
    • 0032652570 scopus 로고    scopus 로고
    • Rock: A robust clustering algorithm for categorical attributes
    • Sydney, Australia, Mar.
    • S. Guha, R. Rastogi, and K. Shim, "Rock: A robust clustering algorithm for categorical attributes", In Proc. 1999 Int. Conf. Data Engineering (ICDE'99), pp. 512-521, Sydney, Australia, Mar. 1999.
    • (1999) Proc. 1999 Int. Conf. Data Engineering (ICDE'99) , pp. 512-521
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 10
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang, "Extensions to the k-means algorithm for clustering large data sets with categorical values", Data Mining and Knowledge Discovery, 2: 283-304, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 283-304
    • Huang, Z.1
  • 13
    • 0003136237 scopus 로고
    • Efficient and effective clustering method for spatial data mining
    • Santiago, Chile, Sept.
    • R. Ng and J. Han, "Efficient and effective clustering method for spatial data mining", In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB'94), pp. 144-155, Santiago, Chile, Sept. 1994.
    • (1994) Proc. 1994 Int. Conf. Very Large Data Bases (VLDB'94) , pp. 144-155
    • Ng, R.1    Han, J.2
  • 15
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    • June
    • Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu: "Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications", Data Mining and Knowledge Discovery, Vol. 2, No 2, June 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 16
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining
    • Athens, Greece, Aug.
    • W. Wang, J. Yang, and R. Muntz, "STING: A statistical information grid approach to spatial data mining", In Proc. 1997 Int. Conf. Very Large Data Bases (VLDB'97), pp. 186-195, Athens, Greece, Aug. 1997.
    • (1997) Proc. 1997 Int. Conf. Very Large Data Bases (VLDB'97) , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.