-
1
-
-
0000296895
-
The role of chaotic orbits in the determination of power spectra
-
T. M. Antonsen, Jr., Z. Fan, E. Ott, and E. Garcia-Lopez, "The role of chaotic orbits in the determination of power spectra," Phys. Fluids 8, 3094 (1996).
-
(1996)
Phys. Fluids
, vol.8
, pp. 3094
-
-
Antonsen Jr., T.M.1
Fan, Z.2
Ott, E.3
Garcia-Lopez, E.4
-
2
-
-
0000306484
-
Turbulent decay of a passive scalar in the batchelor limit: Exact results from a quantum-mechanical approach
-
D. T. Son, "Turbulent decay of a passive scalar in the Batchelor limit: Exact results from a quantum-mechanical approach," Phys. Rev. E 59, R3811 (1999).
-
(1999)
Phys. Rev. E
, vol.59
-
-
Son, D.T.1
-
3
-
-
0001177132
-
Universal long-time properties of Lagrangian statistics in the batchelor regime and their application to the passive scalar problem
-
E. Balkovsky and A. Fouxon, "Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem," Phys. Rev. E 60, 4164 (1999).
-
(1999)
Phys. Rev. E
, vol.60
, pp. 4164
-
-
Balkovsky, E.1
Fouxon, A.2
-
4
-
-
37649033066
-
Scalar variance decay in chaotic advection and batchelor-regime turbulence
-
D. R. Fereday, P. H. Haynes, A. Wonhas, and J. C. Vassilicos, "Scalar variance decay in chaotic advection and Batchelor-regime turbulence," Phys. Rev. E 65, 035301(R) (2002).
-
(2002)
Phys. Rev. E
, vol.65
, pp. 035301
-
-
Fereday, D.R.1
Haynes, P.H.2
Wonhas, A.3
Vassilicos, J.C.4
-
5
-
-
41349123509
-
Mixing in fully chaotic flows
-
A. Wonhas and J. C. Vassilicos, "Mixing in fully chaotic flows," Phys. Rev. E 66, 051205 (2002).
-
(2002)
Phys. Rev. E
, vol.66
, pp. 051205
-
-
Wonhas, A.1
Vassilicos, J.C.2
-
6
-
-
0037338052
-
Persistent patterns in deterministic mixing flows
-
A. Pikovsky and O. Popovych, "Persistent patterns in deterministic mixing flows," Europhys. Lett. 61, 625 (2003).
-
(2003)
Europhys. Lett.
, vol.61
, pp. 625
-
-
Pikovsky, A.1
Popovych, O.2
-
7
-
-
0028443143
-
Tracer microstructure in the large-eddy dominated regime
-
R. T. Pierrehumbert, "Tracer microstructure in the large-eddy dominated regime," Chaos, Solitons Fractals 4, 1091 (1994).
-
(1994)
Chaos, Solitons Fractals
, vol.4
, pp. 1091
-
-
Pierrehumbert, R.T.1
-
8
-
-
1542342853
-
Chaotic mixing in a torus map
-
J.-L. Thiffeault and S. Childress, "Chaotic mixing in a torus map," Chaos 13, 502 (2003).
-
(2003)
Chaos
, vol.13
, pp. 502
-
-
Thiffeault, J.-L.1
Childress, S.2
-
9
-
-
0348107022
-
Strange eigenmodes and decay of variance in the mixing of diffusive tracers
-
W. Liu and G. Haller, "Strange eigenmodes and decay of variance in the mixing of diffusive tracers," Physica D 188, 1 (2004).
-
(2004)
Physica D
, vol.188
, pp. 1
-
-
Liu, W.1
Haller, G.2
-
10
-
-
41349086027
-
Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: From non-self-similar probability distribution functions to self-similar eigenmodes
-
J. Sukhatme and R. T. Pierrehumbert, "Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: From non-self-similar probability distribution functions to self-similar eigenmodes," Phys. Rev. E 66, 056032 (2002).
-
(2002)
Phys. Rev. E
, vol.66
, pp. 056032
-
-
Sukhatme, J.1
Pierrehumbert, R.T.2
-
11
-
-
0003796622
-
-
Springer-Verlag, Berlin
-
S. Childress and A. D. Gilbert, Stretch, Twist, Fold: The Fast Dynamo (Springer-Verlag, Berlin, 1995).
-
(1995)
Stretch, Twist, Fold: The Fast Dynamo
-
-
Childress, S.1
Gilbert, A.D.2
-
12
-
-
17044374336
-
On the rate of mixing of axiom a flows
-
M. Pollicott, "On the rate of mixing of Axiom A flows," Invent. Math. 81, 413 (1981).
-
(1981)
Invent. Math.
, vol.81
, pp. 413
-
-
Pollicott, M.1
-
13
-
-
33646978879
-
Meromorphic extensions of generalised zeta functions
-
M. Pollicott, "Meromorphic extensions of generalised zeta functions," Invent. Math. 85, 147 (1986).
-
(1986)
Invent. Math.
, vol.85
, pp. 147
-
-
Pollicott, M.1
-
14
-
-
0001337517
-
Resonances of chaotic dynamical systems
-
D. Ruelle, "Resonances of chaotic dynamical systems," Phys. Rev. Lett. 56, 405 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 405
-
-
Ruelle, D.1
-
15
-
-
0033592591
-
Persistent patterns in transient chaotic fluid mixing
-
D. Rothstein, E. Henry, and J. P. Gollub, "Persistent patterns in transient chaotic fluid mixing," Nature (London) 401, 770 (1999).
-
(1999)
Nature (London)
, vol.401
, pp. 770
-
-
Rothstein, D.1
Henry, E.2
Gollub, J.P.3
-
16
-
-
0141761354
-
Mixing rates and symmetry breaking in two-dimensional chaotic flow
-
G. A. Voth, T. C. Saint, G. Dobler, and J. P. Gollub, "Mixing rates and symmetry breaking in two-dimensional chaotic flow," Phys. Fluids 15, 2560 (2003).
-
(2003)
Phys. Fluids
, vol.15
, pp. 2560
-
-
Voth, G.A.1
Saint, T.C.2
Dobler, G.3
Gollub, J.P.4
-
17
-
-
0021453264
-
Kinematic dynamo problem in a linear velocity field
-
Y. B. Zeldovich, A. A. Ruzmaikin, S. A. Molchanov, and D. D. Sokoloff, "Kinematic dynamo problem in a linear velocity field," J. Fluid Mech. 144, 1 (1984).
-
(1984)
J. Fluid Mech.
, vol.144
, pp. 1
-
-
Zeldovich, Y.B.1
Ruzmaikin, A.A.2
Molchanov, S.A.3
Sokoloff, D.D.4
-
19
-
-
0037474725
-
Advection-diffusion in Lagrangian coordinates
-
J.-L. Thiffeault, "Advection-diffusion in Lagrangian coordinates," Phys. Lett. A 309, 415 (2003).
-
(2003)
Phys. Lett. A
, vol.309
, pp. 415
-
-
Thiffeault, J.-L.1
-
22
-
-
0000094552
-
Finite time Lyapunov exponent and advection-diffusion equation
-
X. Z. Tang and A. H. Boozer, "Finite time Lyapunov exponent and advection-diffusion equation," Physica D 95, 283 (1996).
-
(1996)
Physica D
, vol.95
, pp. 283
-
-
Tang, X.Z.1
Boozer, A.H.2
-
23
-
-
0001795527
-
Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions
-
J.-L. Thiffeault and A. H. Boozer, "Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions," Chaos 11, 16 (2001).
-
(2001)
Chaos
, vol.11
, pp. 16
-
-
Thiffeault, J.-L.1
Boozer, A.H.2
-
24
-
-
0037112341
-
Derivatives and constraints in chaotic flows: Asymptotic behaviour and a numerical method
-
J.-L. Thiffeault, "Derivatives and constraints in chaotic flows: Asymptotic behaviour and a numerical method;" Physica D 172, 139 (2002).
-
(2002)
Physica D
, vol.172
, pp. 139
-
-
Thiffeault, J.-L.1
-
25
-
-
84958281152
-
-
private communication
-
E. Ott (private communication).
-
-
-
Ott, E.1
-
27
-
-
84958281153
-
-
note
-
It is not possible to simply invoke an incompressible flow corresponding to a map: In general there is no incompressible flow of the same dimension whose trajectories agree with a given map. Formally, however, the replacement of the metric tensor by one corresponding to a map is well-defined mathematically.
-
-
-
|