메뉴 건너뛰기




Volumn 13, Issue 3, 2009, Pages 1063-1076

Periodic solutions of delay equations in besov spaces and Triebel-Lizorkin spaces

Author keywords

Besov spaces; Delay equations; Maximal regularity; Triebel Lizorkin spaces

Indexed keywords


EID: 74249104177     PISSN: 10275487     EISSN: None     Source Type: Journal    
DOI: 10.11650/twjm/1500405460     Document Type: Article
Times cited : (23)

References (14)
  • 1
    • 0036628277 scopus 로고    scopus 로고
    • The operator-valued Marcinkiewicz multiplier theorems and maximal regularity
    • W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorems and maximal regularity, Math. Z., 240 (2002), 311-343.
    • (2002) Math. Z , vol.240 , pp. 311-343
    • Arendt, W.1    Bu, S.2
  • 2
    • 2442662590 scopus 로고    scopus 로고
    • Operator-valued Fourier multipliers on peoriodic Besov spaces and applications
    • W. Arendt and S. Bu, Operator-valued Fourier multipliers on peoriodic Besov spaces and applications, Proc. of the Edin. Math. Soc., 47 (2004), 15-33.
    • (2004) Proc. of The Edin. Math. Soc , vol.47 , pp. 15-33
    • Arendt, W.1    Bu, S.2
  • 3
    • 33748774224 scopus 로고    scopus 로고
    • Hyperbolicity of delay equations via Fourier multipliers
    • A. Bátkai, E. Fašanga and R. Shvidkoy, Hyperbolicity of delay equations via Fourier multipliers, Acta Sci. Math. (Szeged), 69 (2003), 131-145.
    • (2003) Acta Sci. Math. (szeged) , vol.69 , pp. 131-145
    • Bátkai, A.1    Fa, E.2    Šanga3    Shvidkoy, R.4
  • 4
    • 0035664922 scopus 로고    scopus 로고
    • Bátkai and S. Piazzera, Semigroups and linear partial equations with delay
    • A
    • A. Bátkai and S. Piazzera, Semigroups and linear partial equations with delay, J. Math. Anal. Appl., 264 (2001), 1-20.
    • (2001) J. Math. Anal. Appl , vol.264 , pp. 1-20
  • 5
    • 74249102694 scopus 로고    scopus 로고
    • Maximal regularity for integro-differential equations on periodic Triebel-Lisorkin spaces
    • (to appear).
    • 5. S. Bu and Y. Fang, Maximal regularity for integro-differential equations on periodic Triebel-Lisorkin spaces, Taiwan J. Math., (to appear).
    • Taiwan J. Math
    • Bu, S.1    Fang, Y.2
  • 6
    • 74249110000 scopus 로고    scopus 로고
    • Operator-valued Fourier multipliers on peoriodic Triebel spaces
    • S. Bu and J. Kim, Operator-valued Fourier multipliers on peoriodic Triebel spaces, Acta Math. Sinica, English Series 17 (2004), 15-25.
    • (2004) Acta Math. Sinica, English Series , vol.17 , pp. 15-25
    • Bu, S.1    Kim, J.2
  • 7
    • 0003351942 scopus 로고
    • Functional Differential Equations
    • Springer-Verlag
    • J. K. Hale, Functional Differential Equations, Appl. Math. Sci., Vol. 3, Springer-Verlag, 1971.
    • (1971) Appl. Math. Sci , vol.3
    • Hale, J.K.1
  • 8
    • 3042637814 scopus 로고    scopus 로고
    • Fourier multipliers and integro-differential equations in Banach spaces
    • V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, J. London Math. Soc., 69 (2004), 737-750.
    • (2004) J. London Math. Soc , vol.69 , pp. 737-750
    • Keyantuo, V.1    Lizama, C.2
  • 9
    • 17044384229 scopus 로고    scopus 로고
    • Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces
    • V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Math., 168 (2005), 25-50.
    • (2005) Studia Math , vol.168 , pp. 25-50
    • Keyantuo, V.1    Lizama, C.2
  • 10
    • 16244373947 scopus 로고    scopus 로고
    • Latushkin and F. Räbiger, Opertor valued Fourier multipliers and stability of stongly continuous semigroups
    • Y
    • Y. Latushkin and F. Räbiger, Opertor valued Fourier multipliers and stability of stongly continuous semigroups, Int. Equ. Oper. Theory, 51 (2005), 375-394.
    • (2005) Int. Equ. Oper. Theory , vol.51 , pp. 375-394
  • 11
    • 33749524563 scopus 로고    scopus 로고
    • Fourier multipliers and periodic solutions of delay equations in Banach spaces
    • C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, J. Math. Anal. Appl., 324 (2006), 921-933.
    • (2006) J. Math. Anal. Appl , vol.324 , pp. 921-933
    • Lizama, C.1
  • 12
    • 33748760082 scopus 로고    scopus 로고
    • Maximal regularity of delay equations in Banach spaces
    • C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Math., 175 (2006), 91-102.
    • (2006) Studia Math , vol.175 , pp. 91-102
    • Lizama, C.1    Poblete, V.2
  • 13
    • 13644282800 scopus 로고    scopus 로고
    • The modulus semigroup for linear delay equations III
    • M. Stein, H. Vogt and J. Vöigt, The modulus semigroup for linear delay equations III, J. Funct. Anal., 220 (2005), 388-400.
    • (2005) J. Funct. Anal , vol.220 , pp. 388-400
    • Stein, M.1    Vogt, H.2    Vöigt, J.3
  • 14
    • 0003167382 scopus 로고
    • p-spaces
    • G
    • p-spaces, J. Diff. Equ., 29 (1976), 71-89.
    • (1976) J. Diff. Equ , vol.29 , pp. 71-89


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.