|
Volumn 289, Issue 2, 2010, Pages 176-184
|
Estimation of solid vapor pressures of pure compounds at different temperatures using a multilayer network with particle swarm algorithm
|
Author keywords
Artificial neural networks; Group contribution method; Particle swarm optimization; Solid vapor pressure; Thermodynamic properties
|
Indexed keywords
ARTIFICIAL NEURAL NETWORK;
DATA POINTS;
EXPERIMENTAL DATA;
GROUP CONTRIBUTION METHOD;
HYBRID MODEL;
INPUT PARAMETER;
LIMITING VALUES;
LOWER LIMITS;
MULTI-LAYER NETWORK;
PARTICLE SWARM ALGORITHM;
PURE COMPOUNDS;
SOLID VAPOR PRESSURE;
STRUCTURAL GROUPS;
TRIPLE POINTS;
UPPER LIMITS;
HYDROSTATIC PRESSURE;
MATLAB;
PARTICLE SWARM OPTIMIZATION (PSO);
POINT GROUPS;
SUBLIMATION;
THERMODYNAMICS;
VAPOR PRESSURE;
VAPORS;
NEURAL NETWORKS;
|
EID: 74149085888
PISSN: 03783812
EISSN: None
Source Type: Journal
DOI: 10.1016/j.fluid.2009.12.001 Document Type: Article |
Times cited : (23)
|
References (32)
|