메뉴 건너뛰기




Volumn 37, Issue 4, 2009, Pages 625-644

Inference after variable selection using restricted permutation methods

Author keywords

Covariates; Regression; Sample splitting; Variable selector

Indexed keywords


EID: 74049160444     PISSN: 03195724     EISSN: None     Source Type: Journal    
DOI: 10.1002/cjs.10039     Document Type: Article
Times cited : (9)

References (35)
  • 1
    • 0000501656 scopus 로고
    • Information Theory and the Maximum Likelihood Principle
    • in V. Petrov & F. Csáki, editors, Akademiai Kiádo, Budapest
    • H. Akaike (1973). Information Theory and the Maximum Likelihood Principle, in V. Petrov & F. Csáki, editors, International Symposium on Information Theory, Akademiai Kiádo, Budapest, pp. 267-281.
    • (1973) International Symposium On Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0001587464 scopus 로고
    • The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
    • L. Breiman (1992). The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. Journal of the American Statistical Association, 419, 739-754.
    • (1992) Journal of The American Statistical Association , vol.419 , pp. 739-754
    • Breiman, L.1
  • 3
    • 1942422934 scopus 로고
    • Model uncertainty, data mining and statistical inference (with discussion)
    • C. Chatfield (1995). Model uncertainty, data mining and statistical inference (with discussion). Journal of the Royal Statistical Society Series A, 158, 419-466.
    • (1995) Journal of The Royal Statistical Society Series A , vol.158 , pp. 419-466
    • Chatfield, C.1
  • 4
    • 0040481047 scopus 로고
    • The omission or addition of an independent variable in multiple linear regression
    • W. G. Cochran (1938). The omission or addition of an independent variable in multiple linear regression. Supplement to the Journal of the Royal Statistical Society, 5, 171-176.
    • (1938) Supplement to The Journal of The Royal Statistical Society , vol.5 , pp. 171-176
    • Cochran, W.G.1
  • 5
    • 34548544057 scopus 로고    scopus 로고
    • On a generalization of a result of W. G. Cochran
    • D. R. Cox (2007). On a generalization of a result of W. G. Cochran. Biometrika, 94, 755-759.
    • (2007) Biometrika , vol.94 , pp. 755-759
    • Cox, D.R.1
  • 6
    • 3042730371 scopus 로고    scopus 로고
    • On the harm that ignoring pre-testing can cause
    • D. L. Danilov & J. R. Magnus (2004). On the harm that ignoring pre-testing can cause. Journal of Econo-metrics, 122, 27-46.
    • (2004) Journal of Econo-metrics , vol.122 , pp. 27-46
    • Danilov, D.L.1    Magnus, J.R.2
  • 7
    • 33847360947 scopus 로고
    • Data-Driven Selection of Regressors and the Bootstrap
    • , in T. K. Dijkstra, editors, Springer-Verlag, Berlin
    • Y. K. Dijkstra & J. H. Veldkamp. Data-Driven Selection of Regressors and the Bootstrap, in T. K. Dijkstra, editors, On Model Uncertainty and Its Statistical Implications, Springer-Verlag, Berlin (1988).
    • (1988) On Model Uncertainty and Its Statistical Implications
    • Dijkstra, Y.K.1    Veldkamp, J.H.2
  • 8
    • 0042926531 scopus 로고    scopus 로고
    • Non-parametric methods to predict HIV drug susceptibility phenotype from genotype
    • G. DiRienzo, V. DeGruttola, B. Larder & K. Hertogs (2003). Non-parametric methods to predict HIV drug susceptibility phenotype from genotype. Statistics in Medicine, 22, 2785-2798.
    • (2003) Statistics In Medicine , vol.22 , pp. 2785-2798
    • Dirienzo, G.1    Degruttola, V.2    Larder, B.3    Hertogs, K.4
  • 9
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • B. Efron (1986). How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association, 81, 461-470.
    • (1986) Journal of The American Statistical Association , vol.81 , pp. 461-470
    • Efron, B.1
  • 11
  • 12
    • 40849124245 scopus 로고    scopus 로고
    • The coverage probability of confidence intervals in 2r factorial experiments after preliminary hypothesis testing
    • K. Giri & P. Kabaila (2008). The coverage probability of confidence intervals in 2r factorial experiments after preliminary hypothesis testing. Australian & New Zealand Journal of Statistics, 50, 69-79.
    • (2008) Australian & New Zealand Journal of Statistics , vol.50 , pp. 69-79
    • Giri, K.1    Kabaila, P.2
  • 13
    • 0001552995 scopus 로고
    • Cross-validation, the jack knife, and the boot strap: Excess error estimation inforward logistic regression
    • S. Gong (1986). Cross-validation, the jack knife, and the boot strap: Excess error estimation inforward logistic regression. Journal of the American Statistical Association, 81, 108-118.
    • (1986) Journal of The American Statistical Association , vol.81 , pp. 108-118
    • Gong, S.1
  • 15
    • 0001159321 scopus 로고
    • The impact of model selection on inference in linear regression
    • C. M. Hurvich & C. Tsai (1990). The impact of model selection on inference in linear regression. The American Statistician, 44, 214-217.
    • (1990) The American Statistician , vol.44 , pp. 214-217
    • Hurvich, C.M.1    Tsai, C.2
  • 16
    • 84974108208 scopus 로고
    • The effect of model selection on confidence regions and prediction regions
    • P. Kabaila (1995). The effect of model selection on confidence regions and prediction regions. Econometric Theory, 11, 537-549.
    • (1995) Econometric Theory , vol.11 , pp. 537-549
    • Kabaila, P.1
  • 17
    • 0032365970 scopus 로고    scopus 로고
    • Valid confidence intervals in regression after variable selection
    • P. Kabaila (1998). Valid confidence intervals in regression after variable selection. Econometric Theory, 14, 463-482.
    • (1998) Econometric Theory , vol.14 , pp. 463-482
    • Kabaila, P.1
  • 18
    • 30344438615 scopus 로고    scopus 로고
    • On the large-sample minimal coverage probability of confidence intervals after model selection
    • P. Kabaila & H. Leeb (2006). On the large-sample minimal coverage probability of confidence intervals after model selection. Journal of the American Statistical Association, 101, 619-629.
    • (2006) Journal of The American Statistical Association , vol.101 , pp. 619-629
    • Kabaila, P.1    Leeb, H.2
  • 19
    • 20044364029 scopus 로고    scopus 로고
    • The distribution of a linear predictor after model selection: Conditional finite-sample distributions and asymptotic approximations
    • H. Leeb (2005). The distribution of a linear predictor after model selection: Conditional finite-sample distributions and asymptotic approximations. Journal of Statistical Planning and Inference, 134, 64-89.
    • (2005) Journal of Statistical Planning and Inference , vol.134 , pp. 64-89
    • Leeb, H.1
  • 20
    • 69149085529 scopus 로고    scopus 로고
    • Conditional predictive inference post-model-selection
    • forthcoming
    • H. Leeb (2009).Conditional predictive inference post-model-selection. The Annals of Statistics, forthcoming.
    • (2009) The Annals of Statistics
    • Leeb, H.1
  • 21
    • 0037706986 scopus 로고    scopus 로고
    • The Finite-sample distribution of post-model-selection estimators, and uniform versus non-uniform approximations
    • H. Leeb & B. M. Pötscher (2003). The Finite-sample distribution of post-model-selection estimators, and uniform versus non-uniform approximations. Econometric Theory, 19, 100-142.
    • (2003) Econometric Theory , vol.19 , pp. 100-142
    • Leeb, H.1    Pötscher, B.M.2
  • 22
    • 15744376883 scopus 로고    scopus 로고
    • Model selection and inference: Facts and fictions
    • H. Leeb & B. M. Pötscher (2005). Model selection and inference: Facts and fictions. Econometric Theory, 21,21-59.
    • (2005) Econometric Theory , vol.21 , pp. 21-59
    • Leeb, H.1    Pötscher, B.M.2
  • 25
    • 0000187970 scopus 로고
    • Selection of subsets of regression variables (with discussion)
    • A. J. Miller (1984). Selection of subsets of regression variables (with discussion). Journal of the Royal Statistical Society Series A, 147, 398-425.
    • (1984) Journal of The Royal Statistical Society Series A , vol.147 , pp. 398-425
    • Miller, A.J.1
  • 26
    • 0001225061 scopus 로고
    • Model selection under nonstationarity: Autoregressive models and stochastic linear regression models
    • B. M. Pötscher (1989). Model selection under nonstationarity: Autoregressive models and stochastic linear regression models. Annals of Statistics, 17, 1257-1274.
    • (1989) Annals of Statistics , vol.17 , pp. 1257-1274
    • Pötscher, B.M.1
  • 27
    • 84971851120 scopus 로고
    • Effects of model selection on inference
    • B. M. Pötscher (1991). Effects of model selection on inference. Econometric Theory, 7, 163-185.
    • (1991) Econometric Theory , vol.7 , pp. 163-185
    • Pötscher, B.M.1
  • 28
    • 0347634173 scopus 로고
    • Comment on the effect of model selection on confidence regions and prediction regions
    • B. M. Pötscher (1995). Comment on the effect of model selection on confidence regions and prediction regions. Econometric Theory, 11, 550-559.
    • (1995) Econometric Theory , vol.11 , pp. 550-559
    • Pötscher, B.M.1
  • 29
    • 0040532147 scopus 로고    scopus 로고
    • The distribution of estimators after model selection: Large and small sample results
    • B. M. Pötscher & A. J. Novák (1998). The distribution of estimators after model selection: Large and small sample results. Journal of Statistical Computation and Simulation, 60, 19-56.
    • (1998) Journal of Statistical Computation and Simulation , vol.60 , pp. 19-56
    • Pötscher, B.M.1    Novák, A.J.2
  • 30
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 32
    • 85027186089 scopus 로고
    • Selection of the order of an autoregressive model by Akaike's information criterion
    • R. Shibata (1976). Selection of the order of an autoregressive model by Akaike's information criterion. Biometrika, 63, 117-126.
    • (1976) Biometrika , vol.63 , pp. 117-126
    • Shibata, R.1
  • 34
    • 84986366935 scopus 로고
    • Bootstrapping the process of model selection: An econometric example
    • M. Veall (1992). Bootstrapping the process of model selection: An econometric example. Journal of Applied Econometrics, 7, 93-99.
    • (1992) Journal of Applied Econometrics , vol.7 , pp. 93-99
    • Veall, M.1
  • 35
    • 0037827949 scopus 로고
    • Inference after variable selection in linear regression models
    • P. Zhang (1992). Inference after variable selection in linear regression models. Biometrika, 79, 741-746.
    • (1992) Biometrika , vol.79 , pp. 741-746
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.