메뉴 건너뛰기




Volumn 31, Issue 12, 2009, Pages 1569-1575

Corrosion rate prediction model of carbon steel in regional soil based on BP artificial neural network

Author keywords

BP artificial neural network; Carbon steel; Prediction model; Soil corrosion

Indexed keywords

AIR CONTENT; BP ARTIFICIAL NEURAL NETWORK; CORROSION MODELS; CORROSION TESTS; FORECASTING MODELS; GENERALIZATION ABILITY; KEY FACTORS; LOGICAL RELATIONSHIPS; MASS TRANSFER PROCESS; MATLAB PLATFORM; PHYSICAL AND CHEMICAL PROPERTIES; PREDICTION MODEL; SHORT TERM PREDICTION; SOIL CORROSION; SOIL ENVIRONMENT; TOTAL DISSOLVED SALTS;

EID: 74049148056     PISSN: 1001053X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (12)

References (18)
  • 1
    • 74049154371 scopus 로고
    • Review on electrochemistry measurement method of soil corrosion
    • Song G L, Cao C N, Shi Z M. Review on electrochemistry measurement method of soil corrosion. Oil Gasfield Surf Eng, 1993, 12(3): 6
    • (1993) Oil Gasfield Surf Eng , vol.12 , Issue.3 , pp. 6
    • Song, G.L.1    Cao, C.N.2    Shi, Z.M.3
  • 2
    • 74049155563 scopus 로고    scopus 로고
    • Fitting of corrosion data of carbon in several typical soils in China
    • Feng G Q, Jin M H, Men X L. Fitting of corrosion data of carbon in several typical soils in China. Oil Gasfield Surf Eng, 2000, 19(3):45
    • (2000) Oil Gasfield Surf Eng , vol.19 , Issue.3 , pp. 45
    • Feng, G.Q.1    Jin, M.H.2    Men, X.L.3
  • 3
    • 0035501688 scopus 로고    scopus 로고
    • Cathodic protection criteria of thermally insulated pipeline buried in soil
    • Kim J G, Kim Y W. Cathodic protection criteria of thermally insulated pipeline buried in soil. Corros Sci, 2001, 43: 2011
    • (2001) Corros Sci , vol.43 , pp. 2011
    • Kim, J.G.1    Kim, Y.W.2
  • 4
    • 0030483697 scopus 로고    scopus 로고
    • Aeration cell corrosion of carbon steel in soil: in situ monitoring cell current and potential
    • Levlin E. Aeration cell corrosion of carbon steel in soil: in situ monitoring cell current and potential. Corros Sci, 1996, 38(12): 2083
    • (1996) Corros Sci , vol.38 , Issue.12 , pp. 2083
    • Levlin, E.1
  • 5
    • 56549091044 scopus 로고    scopus 로고
    • Engineering behaviour of soil materials on the corrosion of mild steel
    • Ismail A I M, El-Shamy A M. Engineering behaviour of soil materials on the corrosion of mild steel. Appl Clay Sci, 2009, 42:356
    • (2009) Appl Clay Sci , vol.42 , pp. 356
    • Ismail, A.I.M.1    El-Shamy, A.M.2
  • 7
    • 34247348702 scopus 로고    scopus 로고
    • Kinetic study on corrosion of steel in soil environments using electrical resistance sensor technique
    • Li S Y, Jung S, Park K, et al. Kinetic study on corrosion of steel in soil environments using electrical resistance sensor technique. Mater Chem Phys, 2007, 103:9
    • (2007) Mater Chem Phys , vol.103 , pp. 9
    • Li, S.Y.1    Jung, S.2    Park, K.3
  • 8
    • 74049139689 scopus 로고    scopus 로고
    • Artificial neural network-based evaluation on soil corrosion situation along pipelines
    • Li Y B, Huang K, Zhang L, et al. Artificial neural network-based evaluation on soil corrosion situation along pipelines. Oil Gas Storage Transp, 2007, 26(8):47
    • (2007) Oil Gas Storage Transp , vol.26 , Issue.8 , pp. 47
    • Li, Y.B.1    Huang, K.2    Zhang, L.3
  • 9
    • 0001011951 scopus 로고    scopus 로고
    • Predicting corrosion rate of mild steel in soil based on artificial neural network
    • Guo Z H, Jin M H, Deng J L, et al. Predicting corrosion rate of mild steel in soil based on artificial neural network. J Chin Soc Corros Prot, 1996, 16(4):307
    • (1996) J Chin Soc Corros Prot , vol.16 , Issue.4 , pp. 307
    • Guo, Z.H.1    Jin, M.H.2    Deng, J.L.3
  • 10
    • 74049091404 scopus 로고
    • National Soil Corrosion Test Station Website. Beijing: Science Press
    • National Soil Corrosion Test Station Website. Test Method for Soil Corrosion of Materials. Beijing: Science Press, 1990
    • (1990) Test Method for Soil Corrosion of Materials
  • 11
    • 70350191046 scopus 로고    scopus 로고
    • Physical-chemical properties of sodic alkaline soil in micro scale and its influence on water and salinity transportation
    • Luo J M, Deng W, Zhang X P, et al. Physical-chemical properties of sodic alkaline soil in micro scale and its influence on water and salinity transportation. J Zhejiang Univ Agric Life Sci, 2008, 34(6): 669
    • (2008) J Zhejiang Univ Agric Life Sci , vol.34 , Issue.6 , pp. 669
    • Luo, J.M.1    Deng, W.2    Zhang, X.P.3
  • 12
    • 0029138844 scopus 로고
    • Application of factors analysis for survey in regional soil corrosivity
    • Li S L, Yang Z Y. Application of factors analysis for survey in regional soil corrosivity. Corros Sci Prot Technol, 1995, 7(3):263
    • (1995) Corros Sci Prot Technol , vol.7 , Issue.3 , pp. 263
    • Li, S.L.1    Yang, Z.Y.2
  • 13
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 1990, 3: 551
    • (1990) Neural Networks , vol.3 , pp. 551
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 74049136622 scopus 로고    scopus 로고
    • Description of the corrosion rate of 16Mn pipeline steel in soil by using neural network
    • Zheng X X. Description of the corrosion rate of 16Mn pipeline steel in soil by using neural network. J Xi'an Shiyou Univ Nat Sci Ed, 2004, 19(1):74
    • (2004) J Xi'an Shiyou Univ Nat Sci Ed , vol.19 , Issue.1 , pp. 74
    • Zheng, X.X.1
  • 15
    • 74049087245 scopus 로고    scopus 로고
    • Process neural networks and its application in pipeline soil corrosion rate prediction
    • Zhou S M. Process neural networks and its application in pipeline soil corrosion rate prediction. J Qiqihar Univ Nat Sci Ed, 2008, 24(4):6
    • (2008) J Qiqihar Univ Nat Sci Ed , vol.24 , Issue.4 , pp. 6
    • Zhou, S.M.1
  • 16
    • 36448983729 scopus 로고    scopus 로고
    • Application of neural network technology in corrosion research and engineering
    • Jin Y, Dong C F, Fu D M, et al. Application of neural network technology in corrosion research and engineering. Petrochem Corros Prot, 2001, 18(1): 13
    • (2001) Petrochem Corros Prot , vol.18 , Issue.1 , pp. 13
    • Jin, Y.1    Dong, C.F.2    Fu, D.M.3
  • 17
    • 74049087569 scopus 로고    scopus 로고
    • Application of artificial neural network to the field of corrosion
    • Wang H T, Han E H, Ke W. Application of artificial neural network to the field of corrosion. Corros Sci Technol Prot, 2004, 16(3): 148
    • (2004) Corros Sci Technol Prot , vol.16 , Issue.3 , pp. 148
    • Wang, H.T.1    Han, E.H.2    Ke, W.3
  • 18
    • 74049139689 scopus 로고    scopus 로고
    • Artificial neural network-based evaluation on soil corrosion situation along pipelines
    • Li Y B, Huang K, Zhang L, et al. Artificial neural network-based evaluation on soil corrosion situation along pipelines. Oil Gas Storage Transp, 2007, 26(8): 47
    • (2007) Oil Gas Storage Transp , vol.26 , Issue.8 , pp. 47
    • Li, Y.B.1    Huang, K.2    Zhang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.