메뉴 건너뛰기




Volumn 258, Issue , 2009, Pages 225-242

A constructive neural network for evolving a machine controller in real-time

Author keywords

Constructive Neural Network; Growing Machine Controller; Reinforcement Learning; Spiking Neural Network

Indexed keywords


EID: 74049142780     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-04512-7_12     Document Type: Conference Paper
Times cited : (9)

References (25)
  • 6
    • 34249708388 scopus 로고    scopus 로고
    • Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
    • Florian, R.V.: Reinforcement Learning Through Modulation of Spike-timing-dependent Synaptic Plasticity. Neural Computation 19(6), 1468-1502 (2007)
    • (2007) Neural Computation , vol.19 , Issue.6 , pp. 1468-1502
    • Florian, R.V.1
  • 7
    • 0001948145 scopus 로고
    • Fast learning with incremental rbf networks
    • Fritzke, B.: Fast Learning with Incremental RBF Networks. Neural Processing Letters 1(1), 2-5 (1994)
    • (1994) Neural Processing Letters , vol.1 , Issue.1 , pp. 2-5
    • Fritzke, B.1
  • 10
    • 46049113110 scopus 로고    scopus 로고
    • Attaining fault tolerance through self-adaption: The strengths and weaknesses of evolvable hardware approaches
    • Zurada, J.M., Yen, G.G., Wang, J. (eds.), WCCI 2008. Springer, Heidelberg
    • Greenwood, G.W.: Attaining Fault Tolerance through Self-adaption: The Strengths and Weaknesses of Evolvable Hardware Approaches. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) WCCI 2008. LNCS, vol.5050, pp. 368-387. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.5050 , pp. 368-387
    • Greenwood, G.W.1
  • 12
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • Izhikevich, E.M.:WhichModel to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15(5), 1063-1070 (2004)
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.5 , pp. 1063-1070
    • Izhikevich, E.M.1
  • 13
    • 34948906745 scopus 로고    scopus 로고
    • Solving the distal reward problem through linkage of stdp and dopamine signaling
    • Izhikevich, E.M.: Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling. Cerebral Cortex 10, 1093-1102 (2007)
    • (2007) Cerebral Cortex , vol.10 , pp. 1093-1102
    • Izhikevich, E.M.1
  • 14
    • 1842436050 scopus 로고    scopus 로고
    • The "echo State" approach to analysing and training recurrent neural networks
    • German National Research Institute for Computer Science
    • Jaeger, H.: The "Echo State" Approach to Analysing and Training Recurrent Neural Networks. GMD Report 148, German National Research Institute for Computer Science (2001)
    • (2001) GMD Report 148
    • Jaeger, H.1
  • 17
    • 33745443512 scopus 로고    scopus 로고
    • Self-development of motor abilities resulting from the growth of a neural network reinforced by pleasure and tension
    • Liu, J., Buller, A.: Self-development of Motor Abilities Resulting from the Growth of a Neural Network Reinforced by Pleasure and Tension. In: Proceedings of the 4th International Conference on Development and Learning, pp. 121-125 (2005)
    • (2005) Proceedings of the 4th International Conference on Development and Learning , pp. 121-125
    • Liu, J.1    Buller, A.2
  • 19
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass, W., Natschlaeger, T., Markram, H.: Real-time Computing without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Computation 14(11), 2531-2560 (2002)
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlaeger, T.2    Markram, H.3
  • 21
    • 0000742931 scopus 로고
    • A "neural-Gas" network learns topologies
    • Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.)
    • Martinetz, T.M., Schulten, K.J.: A "Neural-Gas" Network Learns Topologies. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 397-402 (1991)
    • (1991) Artificial Neural Networks , pp. 397-402
    • Martinetz, T.M.1    Schulten, K.J.2
  • 22
    • 39449092723 scopus 로고    scopus 로고
    • Learning with Kernels: Support vector machines, regularization, optimization, and beyond
    • The MIT Press, Cambridge
    • Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. In: Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2001)
    • (2001) Adaptive Computation and Machine Learning
    • Schölkopf, B.1    Smola, A.J.2
  • 24
    • 0032418223 scopus 로고    scopus 로고
    • The recursive deterministic perceptron neural network
    • Tajine, M., Elizondo, D.: The Recursive Deterministic Perceptron Neural Network. Neural Networks 11, 1571-1588 (1998)
    • (1998) Neural Networks , vol.11 , pp. 1571-1588
    • Tajine, M.1    Elizondo, D.2
  • 25
    • 40649090632 scopus 로고    scopus 로고
    • Intelligent Systems Group, Institute for Information and Computing Sciences, Utrecht University
    • Vreeken, J.: Spiking Neural Networks, an Introduction. Intelligent Systems Group, Institute for Information and Computing Sciences, Utrecht University (2003)
    • (2003) Spiking Neural Networks, An Introduction
    • Vreeken, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.