메뉴 건너뛰기




Volumn 25, Issue SUPPL. 2, 2009, Pages 204-207

Identification of barley scab based on multi-spectral imaging technology

Author keywords

Barley; Barley scab; Identification; Least square support vector machine; Partial least squares analysis; Plant protection; Spectrum analysis

Indexed keywords

CALIBRATION METHOD; CROP PRODUCTION; EIGENVECTORS; GRAY VALUE; IDENTIFICATION; IDENTIFYING MODELS; INPUT DATAS; LEAST SQUARE SUPPORT VECTOR MACHINES; LEAST-SQUARES SUPPORT VECTOR MACHINES; MEAN VALUES; MULTISPECTRAL IMAGES; MULTISPECTRAL IMAGING; ORIGINAL IMAGES; PARTIAL LEAST SQUARES ANALYSIS; PLANT PROTECTION; RELIABLE DETECTION; SITE-SPECIFIC; STATISTICAL CHARACTERISTICS; SVM MODEL; THRESHOLD SEGMENTATION;

EID: 74049088211     PISSN: 10026819     EISSN: None     Source Type: Journal    
DOI: 10.3969/j.issn.1002-6819.2009.z2.039     Document Type: Article
Times cited : (5)

References (13)
  • 1
    • 4744352786 scopus 로고    scopus 로고
    • Management and resistance in wheat and barley to Fusarium head blight
    • Bai G, Shaner G. Management and resistance in wheat and barley to Fusarium head blight[J]. Annual Review of Phyto-pathology, 2004, 42: 135-161.
    • (2004) Annual Review of Phyto-Pathology , vol.42 , pp. 135-161
    • Bai, G.1    Shaner, G.2
  • 3
    • 0037507406 scopus 로고    scopus 로고
    • Segmentation of multi-spectral images using the combined classifier approach
    • Paclík P, Duin R P W, van Kempen G M P, et al. Segmentation of multi-spectral images using the combined classifier approach[J]. Image and Vision Computing, 2003, 21(6): 473-482.
    • (2003) Image and Vision Computing , vol.21 , Issue.6 , pp. 473-482
    • Paclík, P.1    Duin, R.P.W.2    van Kempen, G.M.P.3
  • 4
    • 0034028318 scopus 로고    scopus 로고
    • Spectral detection of micronutrient deficiency in 'bragg' soybean
    • Adams M L, Noryell W A, Philpot W D. Spectral detection of micronutrient deficiency in 'bragg' soybean[J]. Journal of Agronomy, 2000, 92(2): 261-268.
    • (2000) Journal of Agronomy , vol.92 , Issue.2 , pp. 261-268
    • Adams, M.L.1    Noryell, W.A.2    Philpot, W.D.3
  • 5
    • 33746395920 scopus 로고    scopus 로고
    • A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor
    • Noh H, Zhang Q, Shin B, et al. A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor[J]. Biosystems Engineering, 2006, 94(4): 477-485.
    • (2006) Biosystems Engineering , vol.94 , Issue.4 , pp. 477-485
    • Noh, H.1    Zhang, Q.2    Shin, B.3
  • 6
    • 0036220619 scopus 로고    scopus 로고
    • Multispectral inspection of citrus in real-time using machine vision and digital signal processors
    • Aleixos N, Blasco J. Multispectral inspection of citrus in real-time using machine vision and digital signal processors[J]. Computers and Electronics in Agriculture, 2002, 33(2): 133-121.
    • (2002) Computers and Electronics in Agriculture , vol.33 , Issue.2 , pp. 133-121
    • Aleixos, N.1    Blasco, J.2
  • 7
    • 16844370591 scopus 로고    scopus 로고
    • Automated detection and mapping of crown discolouration caused by jack pine budworm with 2.5 m resolution multispectral imagery
    • Leckie D G, Cloney E. Automated detection and mapping of crown discolouration caused by jack pine budworm with 2.5 m resolution multispectral imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 7(1): 61-77.
    • (2005) International Journal of Applied Earth Observation and Geoinformation , vol.7 , Issue.1 , pp. 61-77
    • Leckie, D.G.1    Cloney, E.2
  • 8
    • 0042233698 scopus 로고    scopus 로고
    • Fall armyworm damaged maize plant identification using digital images
    • Sena Jr D G, Pinto F A C, Queiroz D M, et al. Fall armyworm damaged maize plant identification using digital images[J]. Biosystems Engineering, 2003, 85(4): 449-454.
    • (2003) Biosystems Engineering , vol.85 , Issue.4 , pp. 449-454
    • Sena, Jr.D.G.1    Pinto, F.A.C.2    Queiroz, D.M.3
  • 9
    • 37349071503 scopus 로고    scopus 로고
    • Multi-classification of pizza using computer vision and support vector machine
    • Du C J, Sun D W. Multi-classification of pizza using computer vision and support vector machine[J]. Journal of Food Engineering, 2008, 86(2): 234-242.
    • (2008) Journal of Food Engineering , vol.86 , Issue.2 , pp. 234-242
    • Du, C.J.1    Sun, D.W.2
  • 10
    • 74049155449 scopus 로고    scopus 로고
    • An image segmentation algorithm based on genetic neural network and texture information
    • in Chinese
    • Chen Jiajuan, Zhao Xuedu, Zhao Ju, et al. An image segmentation algorithm based on genetic neural network and texture information[J]. Computer Engineering, 2002, 28(9): 86-89. (in Chinese with English abstract)
    • (2002) Computer Engineering , vol.28 , Issue.9 , pp. 86-89
    • Chen, J.1    Zhao, X.2    Zhao, J.3
  • 11
    • 74049089325 scopus 로고    scopus 로고
    • A color image method for plant disease based on statistical pattern recognition
    • in Chinese
    • Tian Youwen, Li Chenghua. A color image method for plant disease based on statistical pattern recognition[J]. Journal of Shenyang Agricultural University, 2003, 34(2): 301-304. (in Chinese with English abstract)
    • (2003) Journal of Shenyang Agricultural University , vol.34 , Issue.2 , pp. 301-304
    • Tian, Y.1    Li, C.2
  • 12
    • 74049104856 scopus 로고    scopus 로고
    • Chinese source
    • 2006, 26: 1749-1753.
    • (2006) , vol.26 , pp. 1749-1753
  • 13
    • 33750405944 scopus 로고    scopus 로고
    • Nitrogen stress measurement of canola based on multi-spectral charged coupled device imaging sensor
    • in Chinese with Press, 2002
    • Feng Lei, Fang Hui, Zhou Weijun, et al. Nitrogen stress measurement of canola based on multi-spectral charged coupled device imaging sensor[J]. Spectroscopy and Spectral Analysis, 2006, 26: 1794-1753. in Chinese with Press, 2002.
    • (2006) Spectroscopy and Spectral Analysis , vol.26 , pp. 1794-1753
    • Feng, L.1    Fang, H.2    Zhou, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.