메뉴 건너뛰기




Volumn 38, Issue 1, 2010, Pages 146-180

RATES of convergence for the posterior distributions of mixtures of betas and adaptive nonparametric estimation of the density

Author keywords

Adaptive estimation; Bayesian nonparametric; Kernel; Mixtures of Betas; Rates of convergence

Indexed keywords


EID: 73949090480     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/09-AOS703     Document Type: Article
Times cited : (60)

References (18)
  • 2
    • 0001787029 scopus 로고
    • Bayesian density estimation by mixtures of normal distributions
    • M. H. Rizvi, J. S. Rustagi and D. Siegmund, eds. Academic Press, New York. MR0736538
    • FERGUSON, T. S. (1983). Bayesian density estimation by mixtures of Normal distributions. In Recent Advances in Statistics (M. H. Rizvi, J. S. Rustagi and D. Siegmund, eds.) 287-302. Academic Press, New York. MR0736538
    • (1983) Recent Advances in Statistics , pp. 287-302
    • Ferguson, T.S.1
  • 3
    • 0035470891 scopus 로고    scopus 로고
    • Convergence rates for density estimation with Bernstein polynomials
    • MR1873330
    • GHOSAL, S. (2001). Convergence rates for density estimation with Bernstein polynomials. Ann. Statist. 29 1264-1280. MR1873330
    • (2001) Ann. Statist , vol.29 , pp. 1264-1280
    • Ghosal, S.1
  • 4
    • 0035470893 scopus 로고    scopus 로고
    • Entropies and rates of convergence for maximum likelihood and bayes estimation for mixtures of normal densities
    • MR1873329
    • GHOSAL, S. and VAN DER VAART, A. (2001). Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities. Ann. Statist. 29 1233-1263. MR1873329
    • (2001) Ann. Statist , vol.29 , pp. 1233-1263
    • Ghosal, S.1    Van Der Vaart, A.2
  • 5
    • 33751526418 scopus 로고    scopus 로고
    • Posterior convergence rates of dirichlet mixtures of normal distributions for smooth densities
    • MR2336864
    • GHOSAL, S. and VAN DER VAART, A. (2007). Posterior convergence rates of Dirichlet mixtures of normal distributions for smooth densities. Ann. Statist. 35 697-723. MR2336864
    • (2007) Ann. Statist , vol.35 , pp. 697-723
    • Ghosal, S.1    Van Der Vaart, A.2
  • 6
    • 49449093584 scopus 로고    scopus 로고
    • Convergence rates of posterior distributions for non-i.i.d. observations
    • MR2332274
    • GHOSAL, S. and VAN DER VAART, A. (2007). Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Statist. 35 192-223. MR2332274
    • (2007) Ann. Statist , vol.35 , pp. 192-223
    • Ghosal, S.1    Van Der Vaart, A.2
  • 8
    • 40949152002 scopus 로고    scopus 로고
    • Posterior convergence rates for dirichlet mixtures of beta densities
    • MR2406419
    • KRUIJER, W. and VAN DER VAART, A. (2008). Posterior convergence rates for Dirichlet mixtures of Beta densities. J. Statist. Plann. Inference 138 1981-1992. MR2406419
    • (2008) J. Statist. Plann. Inference , vol.138 , pp. 1981-1992
    • Kruijer, W.1    Van Der Vaart, A.2
  • 9
    • 0001876649 scopus 로고
    • On a class of bayesian nonparametric estimates I. Density estimates
    • MR0733519
    • LO, A. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351-357. MR0733519
    • (1984) Ann. Statist , Issue.12 , pp. 351-357
    • Lo, A.1
  • 11
    • 33750274518 scopus 로고    scopus 로고
    • Bayesianmodelling and inference on mixtures of distributions
    • MARIN, J. M.,MENGERSEN, K. andROBERT, C. P. (2005). Bayesianmodelling and inference on mixtures of distributions. Handbook of Statist. 25 459-507.
    • (2005) Handbook of Statist , Issue.25 , pp. 459-507
    • Marin, J.M.1    Mengersen, K.2    Robert, C.P.3
  • 12
    • 51049119292 scopus 로고    scopus 로고
    • Approximating interval hypothesis: P-values and Bayes factors
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds. Oxford Univ. Press, Oxford. MR2433202
    • ROUSSEAU, J. (2007). Approximating interval hypothesis: p-values and Bayes factors. In Bayesian Statistics (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 8. Oxford Univ. Press, Oxford. MR2433202
    • (2007) Bayesian Statistics , vol.8
    • Rousseau, J.1
  • 14
    • 10844278619 scopus 로고    scopus 로고
    • Nonparametric mixture priors based on an exponential random scheme
    • PETRONE, S. and VERONESE, P. (2002). Nonparametric mixture priors based on an exponential random scheme. Stat. Methods Appl. 11 1-20.
    • (2002) Stat. Methods Appl , vol.11 , pp. 1-20
    • Petrone, S.1    Veronese, P.2
  • 15
    • 73949110856 scopus 로고    scopus 로고
    • Convergence rates of posterior distributions for dirichlet mixtures of normal densities
    • SCRICCIOLO, C. (2009). Convergence rates of posterior distributions for Dirichlet mixtures of normal densities. Scand. J. Statist. 36 337-354.
    • (2009) Scand. J. Statist , vol.36 , pp. 337-354
    • Scricciolo, C.1
  • 16
    • 55849114792 scopus 로고    scopus 로고
    • Bayesian inference with rescaled Gaussian process priors
    • MR2357712
    • VAN DER VAART, A. W. and VAN ZANTEN, J. H. (2007). Bayesian inference with rescaled Gaussian process priors. Electron. J. Stat. 1 433-448. MR2357712
    • (2007) Electron. J. Stat. , vol.1 , pp. 433-448
    • Van Der Vaart, A.W.1    Van Zanten, J.H.2
  • 17
    • 69049092744 scopus 로고    scopus 로고
    • Adaptive Bayesian estimation using a gaussian random field with inverse gamma bandwidth
    • VAN DER VAART, A. W. and VAN ZANTEN, J. H. (2009). Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth. Ann. Statist. 37 2655-2675.
    • (2009) Ann. Statist , vol.37 , pp. 2655-2675
    • Van Der Vaart, A.W.1    Van Zanten, J.H.2
  • 18
    • 68649119440 scopus 로고    scopus 로고
    • Kullback-Leibler property of kernel mixture priors in bayesian density estimation
    • MR2399197
    • WU, Y. and GHOSAL, S. (2008). Kullback-Leibler property of kernel mixture priors in Bayesian density estimation. Electron. J. Stat. 2 298-331. MR2399197
    • (2008) Electron. J. Stat. , vol.2 , pp. 298-331
    • Wu, Y.1    Ghosal, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.