-
1
-
-
0344877162
-
-
10.1038/nature02018
-
T. Kimura, Nature (London) 426, 55 (2003). 10.1038/nature02018
-
(2003)
Nature (London)
, vol.426
, pp. 55
-
-
Kimura, T.1
-
2
-
-
34147166584
-
-
10.1103/PhysRevLett.98.147204
-
Y. Yamasaki, Phys. Rev. Lett. 98, 147204 (2007). 10.1103/PhysRevLett.98. 147204
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 147204
-
-
Yamasaki, Y.1
-
3
-
-
33646697168
-
-
10.1038/nphys212
-
A. Pimenov, Nat. Phys. 2, 97 (2006). 10.1038/nphys212
-
(2006)
Nat. Phys.
, vol.2
, pp. 97
-
-
Pimenov, A.1
-
6
-
-
56449101270
-
-
10.1088/0953-8984/20/43/434211
-
T. Arima, J. Phys.: Condens. Matter 20, 434211 (2008). 10.1088/0953-8984/20/43/434211
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 434211
-
-
Arima, T.1
-
9
-
-
33748995114
-
-
10.1103/PhysRevB.74.100403;
-
A. Pimenov, Phys. Rev. B 74, 100403 (R) (2006) 10.1103/PhysRevB.74.100403
-
(2006)
Phys. Rev. B
, vol.74
, pp. 100403
-
-
Pimenov, A.1
-
10
-
-
33846396780
-
-
10.1103/PhysRevLett.98.027202;
-
A. B. Sushkov, Phys. Rev. Lett. 98, 027202 (2007) 10.1103/PhysRevLett.98. 027202
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 027202
-
-
Sushkov, A.B.1
-
11
-
-
34548043263
-
-
10.1103/PhysRevB.76.060404;
-
R. Valdes-Aguilar, Phys. Rev. B 76, 060404 (R) (2007) 10.1103/PhysRevB.76.060404
-
(2007)
Phys. Rev. B
, vol.76
, pp. 060404
-
-
Valdes-Aguilar, R.1
-
12
-
-
38849204142
-
-
10.1103/PhysRevB.77.014438
-
A. Pimenov, Phys. Rev. B 77, 014438 (2008). 10.1103/PhysRevB.77.014438
-
(2008)
Phys. Rev. B
, vol.77
, pp. 014438
-
-
Pimenov, A.1
-
13
-
-
56449128033
-
-
10.1088/0953-8984/20/43/434210;
-
A. B. Sushkov, J. Phys.: Condens. Matter 20, 434210 (2008) 10.1088/0953-8984/20/43/434210
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 434210
-
-
Sushkov, A.B.1
-
14
-
-
60449116069
-
-
10.1103/PhysRevLett.102.047203;
-
R. Valdes-Aguilar, Phys. Rev. Lett. 102, 047203 (2009) 10.1103/PhysRevLett.102.047203
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 047203
-
-
Valdes-Aguilar, R.1
-
15
-
-
63649118120
-
-
10.1103/PhysRevLett.102.107203
-
A. Pimenov, Phys. Rev. Lett. 102, 107203 (2009). 10.1103/PhysRevLett.102. 107203
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 107203
-
-
Pimenov, A.1
-
16
-
-
55149104411
-
-
10.1103/PhysRevLett.101.187201
-
Y. Takahashi, Phys. Rev. Lett. 101, 187201 (2008). 10.1103/PhysRevLett. 101.187201
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 187201
-
-
Takahashi, Y.1
-
17
-
-
52949108492
-
-
10.1103/PhysRevB.78.104414;
-
N. Kida, Phys. Rev. B 78, 104414 (2008) 10.1103/PhysRevB.78.104414
-
(2008)
Phys. Rev. B
, vol.78
, pp. 104414
-
-
Kida, N.1
-
18
-
-
56449110910
-
-
10.1088/0953-8984/20/43/434209
-
A. Pimenov, J. Phys.: Condens. Matter 20, 434209 (2008). 10.1088/0953-8984/20/43/434209
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 434209
-
-
Pimenov, A.1
-
21
-
-
47349088118
-
-
10.1103/PhysRevB.78.012104
-
A. Cano and E. I. Kats, Phys. Rev. B 78, 012104 (2008). 10.1103/PhysRevB.78.012104
-
(2008)
Phys. Rev. B
, vol.78
, pp. 012104
-
-
Cano, A.1
Kats, E.I.2
-
23
-
-
27144536536
-
-
10.1103/PhysRevLett.95.057205;
-
H. Katsura, Phys. Rev. Lett. 95, 057205 (2005) 10.1103/PhysRevLett.95. 057205
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 057205
-
-
Katsura, H.1
-
24
-
-
33645220523
-
-
10.1103/PhysRevB.73.094434;
-
I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006) 10.1103/PhysRevB.73.094434
-
(2006)
Phys. Rev. B
, vol.73
, pp. 094434
-
-
Sergienko, I.A.1
Dagotto, E.2
-
25
-
-
33144487491
-
-
10.1103/PhysRevLett.96.067601
-
M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006). 10.1103/PhysRevLett.96. 067601
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 067601
-
-
Mostovoy, M.1
-
27
-
-
41049104857
-
-
10.1103/PhysRevLett.100.089702
-
M. Mostovoy, Phys. Rev. Lett. 100, 089702 (2008). 10.1103/PhysRevLett. 100.089702
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 089702
-
-
Mostovoy, M.1
-
28
-
-
73649107122
-
-
arXiv:0908.0061 (unpublished).
-
P. Rovillain, arXiv:0908.0061 (unpublished).
-
-
-
Rovillain, P.1
-
29
-
-
33644549387
-
-
10.1103/PhysRevB.73.054431;
-
D. Belitz, Phys. Rev. B 73, 054431 (2006) 10.1103/PhysRevB.73.054431
-
(2006)
Phys. Rev. B
, vol.73
, pp. 054431
-
-
Belitz, D.1
-
30
-
-
55349102708
-
-
10.1103/PhysRevB.78.144427
-
S. Tewari, Phys. Rev. B 78, 144427 (2008). 10.1103/PhysRevB.78.144427
-
(2008)
Phys. Rev. B
, vol.78
, pp. 144427
-
-
Tewari, S.1
-
32
-
-
84927374201
-
-
10.1070/PU1984v027n11ABEH004120
-
Yu. I. Izyumov, [Sov. Phys. Usp. 27, 845 (1984)]. 10.1070/ PU1984v027n11ABEH004120
-
(1984)
Sov. Phys. Usp.
, vol.27
, pp. 845
-
-
Izyumov, Yu.I.1
-
33
-
-
0032355871
-
-
10.1143/JPSJ.67.1529;
-
S. Kawasaki, J. Phys. Soc. Jpn. 67, 1529 (1998) 10.1143/JPSJ.67.1529
-
(1998)
J. Phys. Soc. Jpn.
, vol.67
, pp. 1529
-
-
Kawasaki, S.1
-
34
-
-
0001632999
-
-
10.1103/PhysRevB.62.844
-
P. M. Woodward, Phys. Rev. B 62, 844 (2000). 10.1103/PhysRevB.62.844
-
(2000)
Phys. Rev. B
, vol.62
, pp. 844
-
-
Woodward, P.M.1
-
35
-
-
27144506019
-
-
10.1103/PhysRevLett.95.087206
-
M. Kenzelmann, Phys. Rev. Lett. 95, 087206 (2005). 10.1103/PhysRevLett. 95.087206
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 087206
-
-
Kenzelmann, M.1
-
36
-
-
34047123034
-
-
10.1103/PhysRevLett.98.137206
-
D. Senff, Phys. Rev. Lett. 98, 137206 (2007). 10.1103/PhysRevLett.98. 137206
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 137206
-
-
Senff, D.1
-
37
-
-
33846363611
-
-
10.1103/PhysRevLett.98.027203
-
H. Katsura, Phys. Rev. Lett. 98, 027203 (2007). 10.1103/PhysRevLett.98. 027203
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 027203
-
-
Katsura, H.1
-
39
-
-
73649093975
-
-
The electromagnon damping determines the frequency window in which the optical rotation is expected to vary with the frequency and negative index behavior can be achieved. Very sharp electromagnons can produce a π/4 rotation and negative index behavior at the corresponding frequencies. For a ME response as observed in spiral multiferroics (with changes in the optical absorption up to a factor 10), rotations of □π/40 can be expected within a frequency window of □10□ cm-1 about the electromagnon peaks. The relatively large electromagnon damping in this case, however, may prevent negative index behavior.
-
The electromagnon damping determines the frequency window in which the optical rotation is expected to vary with the frequency and negative index behavior can be achieved. Very sharp electromagnons can produce a π/4 rotation and negative index behavior at the corresponding frequencies. For a ME response as observed in spiral multiferroics (with changes in the optical absorption up to a factor 10), rotations of □π/40 can be expected within a frequency window of □10□ cm-1 about the electromagnon peaks. The relatively large electromagnon damping in this case, however, may prevent negative index behavior.
-
-
-
-
40
-
-
8844230321
-
-
10.1126/science.1104467;
-
J. B. Pendry, Science 306, 1353 (2004) 10.1126/science.1104467
-
(2004)
Science
, vol.306
, pp. 1353
-
-
Pendry, J.B.1
-
41
-
-
27144435518
-
-
10.1103/PhysRevLett.95.123904
-
C. Monzon and D. W. Forester, Phys. Rev. Lett. 95, 123904 (2005). 10.1103/PhysRevLett.95.123904
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 123904
-
-
Monzon, C.1
Forester, D.W.2
-
43
-
-
58949098595
-
-
10.1103/PhysRevLett.102.023901;
-
S. Zhang, Phys. Rev. Lett. 102, 023901 (2009) 10.1103/PhysRevLett.102. 023901
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 023901
-
-
Zhang, S.1
-
44
-
-
59249108698
-
-
10.1103/PhysRevB.79.035407
-
E. Plum, Phys. Rev. B 79, 035407 (2009). 10.1103/PhysRevB.79.035407
-
(2009)
Phys. Rev. B
, vol.79
, pp. 035407
-
-
Plum, E.1
|