-
1
-
-
0034720290
-
-
10.1038/35010065
-
K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Nature (London) 404, 974 (2000). 10.1038/35010065
-
(2000)
Nature (London)
, vol.404
, pp. 974
-
-
Schwab, K.1
Henriksen, E.A.2
Worlock, J.M.3
Roukes, M.L.4
-
3
-
-
46249111303
-
-
10.1080/15567260801917520
-
V. P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, and A. Majundar, Nanoscale Microscale Thermophys. Eng. 12, 1 (2008). 10.1080/15567260801917520
-
(2008)
Nanoscale Microscale Thermophys. Eng.
, vol.12
, pp. 1
-
-
Carey, V.P.1
Chen, G.2
Grigoropoulos, C.3
Kaviany, M.4
Majundar, A.5
-
4
-
-
33751216776
-
-
10.1126/science.1132898
-
C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314, 1121 (2006). 10.1126/science.1132898
-
(2006)
Science
, vol.314
, pp. 1121
-
-
Chang, C.W.1
Okawa, D.2
Majumdar, A.3
Zettl, A.4
-
5
-
-
50249175085
-
-
10.1088/1367-2630/10/8/083016
-
R. Scheibner, M. König, D. Reuter, A. D. Wieck, C. Gould, H. Buhmann, and L. W. Molenkamp, New J. Phys. 10, 083016 (2008). 10.1088/1367-2630/10/8/083016
-
(2008)
New J. Phys.
, vol.10
, pp. 083016
-
-
Scheibner, R.1
König, M.2
Reuter, D.3
Wieck, A.D.4
Gould, C.5
Buhmann, H.6
Molenkamp, L.W.7
-
8
-
-
33748773602
-
-
10.1103/PhysRevLett.97.124302
-
B. Hu, L. Yang, and Y. Zhang, Phys. Rev. Lett. 97, 124302 (2006). 10.1103/PhysRevLett.97.124302
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 124302
-
-
Hu, B.1
Yang, L.2
Zhang, Y.3
-
10
-
-
34548463504
-
-
10.1103/PhysRevB.76.073414
-
T. Ojanen and T. T. Heikkilä, Phys. Rev. B 76, 073414 (2007). 10.1103/PhysRevB.76.073414
-
(2007)
Phys. Rev. B
, vol.76
, pp. 073414
-
-
Ojanen, T.1
Heikkilä, T.T.2
-
11
-
-
18044393820
-
-
10.1103/PhysRevLett.94.034301;
-
D. Segal and A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005) 10.1103/PhysRevLett.94.034301
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 034301
-
-
Segal, D.1
Nitzan, A.2
-
12
-
-
40849088038
-
-
10.1103/PhysRevLett.100.105901;
-
D. Segal, Phys. Rev. Lett. 100, 105901 (2008) 10.1103/PhysRevLett.100. 105901
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 105901
-
-
Segal, D.1
-
13
-
-
63149183211
-
-
10.1103/PhysRevLett.102.095503;
-
L.-A. Wu and D. Segal, Phys. Rev. Lett. 102, 095503 (2009) 10.1103/PhysRevLett.102.095503
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 095503
-
-
Wu, L.-A.1
Segal, D.2
-
14
-
-
70449364095
-
-
10.1103/PhysRevE.80.041103
-
L. Wu, C. Yu, and D. Segal, Phys. Rev. E 80, 041103 (2009). 10.1103/PhysRevE.80.041103
-
(2009)
Phys. Rev. e
, vol.80
, pp. 041103
-
-
Wu, L.1
Yu, C.2
Segal, D.3
-
17
-
-
42449104355
-
-
10.1103/PhysRevLett.100.155902
-
T. Ojanen and A.-P. Jauho, Phys. Rev. Lett. 100, 155902 (2008). 10.1103/PhysRevLett.100.155902
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 155902
-
-
Ojanen, T.1
Jauho, A.-P.2
-
20
-
-
73649102968
-
-
In reality the existence of strictly forbidden transitions is rare and often there remains a weak residual coupling. From point of view of rectification, the relevant unideal effect arises from the direct coupling of the ground state and the first excited state by right reservoir transitions. As discussed in the context of virtual transitions below, these processes can lift the exponential blockade.
-
In reality the existence of strictly forbidden transitions is rare and often there remains a weak residual coupling. From point of view of rectification, the relevant unideal effect arises from the direct coupling of the ground state and the first excited state by right reservoir transitions. As discussed in the context of virtual transitions below, these processes can lift the exponential blockade.
-
-
-
-
21
-
-
73649122637
-
-
Widths of the resonances of AL/R (ω) are determined by the strength of dissipation through γL/R (ω).
-
Widths of the resonances of AL/R (ω) are determined by the strength of dissipation through γL/R (ω).
-
-
-
-
22
-
-
73649101509
-
-
The coupling operators imply that one of the baths couple to the oscillator coordinate, the other one to the two-level system.
-
The coupling operators imply that one of the baths couple to the oscillator coordinate, the other one to the two-level system.
-
-
-
|