메뉴 건너뛰기




Volumn , Issue , 2009, Pages 303-307

Extreme learning machine with fuzzy activation function

Author keywords

Activation function; Extreme learning machine; Fuzzy; SLFN

Indexed keywords

ACTIVATION FUNCTIONS; EFFICIENT LEARNING; EXTREME LEARNING MACHINE; GRADIENT-DESCENT; HARDWARE IMPLEMENTATIONS; HIDDEN LAYERS; INPUT WEIGHTS; ITERATIVE PROCESS; LEARNING SPEED; NETWORK WEIGHTS; NONLINEAR ACTIVATION FUNCTIONS; RANDOM CHOICE; REAL APPLICATIONS; SIGMOIDAL ACTIVATION FUNCTIONS; SINGLE-HIDDEN LAYER FEEDFORWARD NEURAL NETWORKS;

EID: 73549097097     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/NCM.2009.206     Document Type: Conference Paper
Times cited : (12)

References (20)
  • 1
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • San Diego, CA
    • D. Nguyen and B. Widrow, "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights", Int'l Joint Conf. Neural Neural Networks, vol. 3, San Diego, CA, (1990) 21-26.
    • (1990) Int'l Joint Conf. Neural Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 2
    • 0035272407 scopus 로고    scopus 로고
    • Feedforward Networks Training Speed Enhancement by Optimal Initialization of the Synaptic Coefficients
    • Jim Y. F. Yam and Tommy W. S. Chow, "Feedforward Networks Training Speed Enhancement by Optimal Initialization of the Synaptic Coefficients", IEEE Trans. On Neural NetWorks, vol. 12, no. 2, (2001) 430-434.
    • (2001) IEEE Trans. On Neural NetWorks , vol.12 , Issue.2 , pp. 430-434
    • Yam, J.Y.F.1    Chow, T.W.S.2
  • 3
    • 73549122208 scopus 로고    scopus 로고
    • Karayiannis and A. N. Venetsanopoulos, Artificial neural networks: learning algorithms, performance evaluation, and applications, Kluver Academic (Boston, MA, 1993).
    • Karayiannis and A. N. Venetsanopoulos, "Artificial neural networks: learning algorithms, performance evaluation, and applications", Kluver Academic (Boston, MA, 1993).
  • 6
    • 0032267997 scopus 로고    scopus 로고
    • Adaptive neural nets filter using a recursive levenberg-marquardt search direction
    • Nov
    • L. S. Nghia, J. Sjöberg and M. Viberg, "Adaptive neural nets filter using a recursive levenberg-marquardt search direction", Proc. Asilomar Conf. Signals, Syst., Comput., vol. 1-4, (Nov. 1998) 697-701.
    • (1998) Proc. Asilomar Conf. Signals, Syst., Comput , vol.1-4 , pp. 697-701
    • Nghia, L.S.1    Sjöberg, J.2    Viberg, M.3
  • 7
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, "Extreme learning machine: Theory and applications", Neurocomputing, vol. 70 (2006) 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 8
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximatiors
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximatiors", Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function", Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303-314, 1989.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. Funahashi, " On the approximate realization of continuous mappings by neural networks", Neural Networks, vol. 2, pp. 183-192, 1989.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 11
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Networks, vol. 4, pp. 251-257, 1991.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 12
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Networks, vol. 6, pp. 861-867, 1993.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 13
    • 0025799121 scopus 로고
    • representation of functions by superpositions of a step or sigmoidal function and their applications to neural network theory
    • Y. Ito, "representation of functions by superpositions of a step or sigmoidal function and their applications to neural network theory", Neural networks, vol. 4, pp. 385-394, 1991.
    • (1991) Neural networks , vol.4 , pp. 385-394
    • Ito, Y.1
  • 14
    • 0026479224 scopus 로고
    • d by linear combinations of shifted rotations of a sigmoid function with and without scaling
    • d by linear combinations of shifted rotations of a sigmoid function with and without scaling," Neural Networks, vol. 5, pp. 105-115, 1992.
    • (1992) Neural Networks , vol.5 , pp. 105-115
    • Ito, Y.1
  • 15
    • 0029207175 scopus 로고
    • -n) by multilayer feedforward networks and related problems
    • -n) by multilayer feedforward networks and related problems", IEEE Trans. on Neural Networks, vol. 6, no. 1, pp.25-30, 1995.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.1 , pp. 25-30
    • Chen, T.1    Chen, H.2    Liu, R.-W.3
  • 16
    • 0031365114 scopus 로고    scopus 로고
    • G.-B. Huang and H. A Babri, General Approximation Theorem on Feedforward Networks, Proc. of Int'l Conf. on Information, Communication and Signal Processing (ICIS'97), 1997, pp. 698-702.
    • G.-B. Huang and H. A Babri, "General Approximation Theorem on Feedforward Networks", Proc. of Int'l Conf. on Information, Communication and Signal Processing (ICIS'97), 1997, pp. 698-702.
  • 17
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden Neurons in Feedforward Networks with arbitrary bounded nonlinear activation functions
    • G.-B. Huang and H. A. Babri, "Upper bounds on the number of hidden Neurons in Feedforward Networks with arbitrary bounded nonlinear activation functions", IEEE Trans. on Neural Systems, vol. 9, no. 1, 1998, pp.224-229.
    • (1998) IEEE Trans. on Neural Systems , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.-B.1    Babri, H.A.2
  • 18
    • 47349132202 scopus 로고    scopus 로고
    • Matrices: Theory and Applications
    • New York
    • D. Serre, "Matrices: Theory and Applications", Springer, (New York, 2002).
    • (2002) Springer
    • Serre, D.1
  • 20
    • 0003408496 scopus 로고    scopus 로고
    • UCI Repository of machine learning databases
    • Univ. California. Available
    • C. J. Merz and P. M. Murphy, "UCI Repository of machine learning databases", Dept. of Inform. Comp. Sci., Univ. California. Available: http://mlearn.ics.uci.edu/databases/
    • Dept. of Inform. Comp. Sci
    • Merz, C.J.1    Murphy, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.