-
1
-
-
67349278753
-
Bi-velocity hydrodynamics
-
Brenner H. Bi-velocity hydrodynamics. Physica A 388 (2009) 3391-3398
-
(2009)
Physica A
, vol.388
, pp. 3391-3398
-
-
Brenner, H.1
-
2
-
-
67649487937
-
Bi-velocity hydrodynamics: Single-component fluids
-
Brenner H. Bi-velocity hydrodynamics: Single-component fluids. Internat. J. Eng. Sci. 47 (2009) 930-958
-
(2009)
Internat. J. Eng. Sci.
, vol.47
, pp. 930-958
-
-
Brenner, H.1
-
3
-
-
67649470371
-
Bi-velocity hydrodynamics. Multicomponent fluids
-
Brenner H. Bi-velocity hydrodynamics. Multicomponent fluids. Internat. J. Eng. Sci. 47 (2009) 902-929
-
(2009)
Internat. J. Eng. Sci.
, vol.47
, pp. 902-929
-
-
Brenner, H.1
-
7
-
-
12344295474
-
Kinematics of volume transport
-
Brenner H. Kinematics of volume transport. Physica A 349 (2005) 10-59
-
(2005)
Physica A
, vol.349
, pp. 10-59
-
-
Brenner, H.1
-
8
-
-
73449106892
-
-
It is pointed out in footnote (10) of Ref. [2] that the choice of the symbol and name for this velocity is arbitrary in the absence of additional physical information
-
It is pointed out in footnote (10) of Ref. [2] that the choice of the symbol and name for this velocity is arbitrary in the absence of additional physical information
-
-
-
-
11
-
-
36149006492
-
Reciprocal relations in irreversible processes
-
Onsager L. Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (1931) 405-426
-
(1931)
I, Phys. Rev.
, vol.37
, pp. 405-426
-
-
Onsager, L.1
-
12
-
-
36149006040
-
Reciprocal relations in irreversible processes. II
-
Onsager L. Reciprocal relations in irreversible processes. II. Phys. Rev. 38 (1931) 2265-2279
-
(1931)
Phys. Rev.
, vol.38
, pp. 2265-2279
-
-
Onsager, L.1
-
13
-
-
36149003004
-
On Onsager's principle of microscopic reversibility
-
Casimir H.B.G. On Onsager's principle of microscopic reversibility. Rev. Modern Phys. 17 (1945) 343-350
-
(1945)
Rev. Modern Phys.
, vol.17
, pp. 343-350
-
-
Casimir, H.B.G.1
-
16
-
-
0004080557
-
-
Princeton Univ. Press, Princeton, New Jersey
-
Debenedetti P.G. Metastable Liquids (1996), Princeton Univ. Press, Princeton, New Jersey
-
(1996)
Metastable Liquids
-
-
Debenedetti, P.G.1
-
17
-
-
84926951060
-
The distribution of velocities in a slightly non-uniform gas
-
Burnett D. The distribution of velocities in a slightly non-uniform gas. Proc. London Math. Soc. 39 (1935) 385-430
-
(1935)
Proc. London Math. Soc.
, vol.39
, pp. 385-430
-
-
Burnett, D.1
-
18
-
-
84960552756
-
The distribution of molecular velocities and mean motion in a non-uniform gas
-
Burnett D. The distribution of molecular velocities and mean motion in a non-uniform gas. Proc. London Math. Soc. 40 (1936) 382-435
-
(1936)
Proc. London Math. Soc.
, vol.40
, pp. 382-435
-
-
Burnett, D.1
-
20
-
-
0000637543
-
Method of moments of Grad
-
Reinecke S., and Kremer G.M. Method of moments of Grad. Phys. Rev. A 42 (1990) 815-820
-
(1990)
Phys. Rev. A
, vol.42
, pp. 815-820
-
-
Reinecke, S.1
Kremer, G.M.2
-
22
-
-
21744447597
-
A continuum theory of phoretic phenomena: Thermophoresis
-
Brenner H., and Bielenberg J.R. A continuum theory of phoretic phenomena: Thermophoresis. Physica A 355 (2005) 251-273
-
(2005)
Physica A
, vol.355
, pp. 251-273
-
-
Brenner, H.1
Bielenberg, J.R.2
-
23
-
-
67149110240
-
A nonmolecular derivation of Maxwell's thermal-creep boundary condition for gases and liquids via application of the LeChatelier-Braun principle to Maxwell's thermal stress
-
053602-10
-
Brenner H. A nonmolecular derivation of Maxwell's thermal-creep boundary condition for gases and liquids via application of the LeChatelier-Braun principle to Maxwell's thermal stress. Phys. Fluids 21 (2009) 053602-10
-
(2009)
Phys. Fluids
, vol.21
-
-
Brenner, H.1
-
24
-
-
33745659657
-
Thermophoretic motion of a slightly deformed sphere through a viscous fluid
-
Mohan A., and Brenner H. Thermophoretic motion of a slightly deformed sphere through a viscous fluid. SIAM J. Appl. Math. 66 (2006) 787-801
-
(2006)
SIAM J. Appl. Math.
, vol.66
, pp. 787-801
-
-
Mohan, A.1
Brenner, H.2
-
25
-
-
0001722720
-
Note on the conditions at the surface of contact of a fluid with a solid body
-
Clarendon Press, Oxford
-
Goldstein S. Note on the conditions at the surface of contact of a fluid with a solid body. Modern Developments in Fluid Dynamics vol. II (1938), Clarendon Press, Oxford 676-680
-
(1938)
Modern Developments in Fluid Dynamics
, vol.II
, pp. 676-680
-
-
Goldstein, S.1
-
26
-
-
0010213518
-
Fluid mechanics in the first half of this century
-
Goldstein S. Fluid mechanics in the first half of this century. Ann. Rev. Fluid Mech. 1 (1969) 1-28
-
(1969)
Ann. Rev. Fluid Mech.
, vol.1
, pp. 1-28
-
-
Goldstein, S.1
-
27
-
-
84976128750
-
On the no-slip boundary condition
-
Richardson S. On the no-slip boundary condition. J. Fluid Mech. 59 (1973) 707-719
-
(1973)
J. Fluid Mech.
, vol.59
, pp. 707-719
-
-
Richardson, S.1
-
28
-
-
0023738371
-
Determination of the macroscopic (partial) slip boundary condition over a randomly rough surface with a perfect slip microscopic boundary condition
-
Jansons K.M. Determination of the macroscopic (partial) slip boundary condition over a randomly rough surface with a perfect slip microscopic boundary condition. Phys. Fluids 31 (1988) 15-17
-
(1988)
Phys. Fluids
, vol.31
, pp. 15-17
-
-
Jansons, K.M.1
-
29
-
-
0030153046
-
Effective boundary conditions for Stokes flow over a rough surface
-
Sarkar K., and Prosperetti A. Effective boundary conditions for Stokes flow over a rough surface. J. Fluid. Mech. 316 (1996) 223-240
-
(1996)
J. Fluid. Mech.
, vol.316
, pp. 223-240
-
-
Sarkar, K.1
Prosperetti, A.2
-
30
-
-
0034206383
-
Molecular wall effects: Are conditions at a boundary boundary conditions?
-
Brenner H., and Ganesan V. Molecular wall effects: Are conditions at a boundary boundary conditions?. Phys. Rev. E 61 (2000) 6879-6897
-
(2000)
Phys. Rev. E
, vol.61
, pp. 6879-6897
-
-
Brenner, H.1
Ganesan, V.2
-
31
-
-
28544445269
-
Microfluidics: The no-slip boundary condition
-
Foss J., Tropea. C., and Yarin A. (Eds), Springer, New York (Chapter 15)
-
Lauga E., Brenner M.P., and Stone H.A. Microfluidics: The no-slip boundary condition. In: Foss J., Tropea. C., and Yarin A. (Eds). Handbook of Experimental Fluid Dynamics (2005), Springer, New York (Chapter 15)
-
(2005)
Handbook of Experimental Fluid Dynamics
-
-
Lauga, E.1
Brenner, M.P.2
Stone, H.A.3
-
32
-
-
26444499077
-
Boundary slip in Newtonian liquids: A review of experimental studies
-
Neto C., Evans D.R., Bobaccurso E., Butt H.-J., and Craig V.S.J. Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Progr. Phys. 68 (2005) 2859-2897
-
(2005)
Rep. Progr. Phys.
, vol.68
, pp. 2859-2897
-
-
Neto, C.1
Evans, D.R.2
Bobaccurso, E.3
Butt, H.-J.4
Craig, V.S.J.5
-
33
-
-
0000911805
-
On stresses in rarified [sic] gases resulting from inequalities of temperature
-
Maxwell J.C. On stresses in rarified [sic] gases resulting from inequalities of temperature. Philos. Trans. R. Soc. Lond. A 170 (1879) 231-262
-
(1879)
Philos. Trans. R. Soc. Lond. A
, vol.170
, pp. 231-262
-
-
Maxwell, J.C.1
-
35
-
-
0032347474
-
Maxwell's thermal creep in two space dimensions
-
To quote these authors: "Only a rough explanation of thermal creep was available to Maxwell. Our present understanding is not much better, and remains only semiquantitative"
-
Shida K., and Hoover W.G. Maxwell's thermal creep in two space dimensions. J. Phys. Soc. Japan 67 (1998) 2277-2280 To quote these authors: "Only a rough explanation of thermal creep was available to Maxwell. Our present understanding is not much better, and remains only semiquantitative"
-
(1998)
J. Phys. Soc. Japan
, vol.67
, pp. 2277-2280
-
-
Shida, K.1
Hoover, W.G.2
-
36
-
-
0000614811
-
Thermal creep in rarefied gas
-
Sone Y. Thermal creep in rarefied gas. J. Phys. Soc. Japan 21 (1966) 1836-1837
-
(1966)
J. Phys. Soc. Japan
, vol.21
, pp. 1836-1837
-
-
Sone, Y.1
-
37
-
-
31344465939
-
A continuum model of thermal transpiration
-
Bielenberg J.R., and Brenner H. A continuum model of thermal transpiration. J. Fluid Mech. 546 (2006) 1-23
-
(2006)
J. Fluid Mech.
, vol.546
, pp. 1-23
-
-
Bielenberg, J.R.1
Brenner, H.2
-
38
-
-
73449116812
-
-
Earlier empirical demonstrations [18,29] that the no-slip condition boundary condition applied generally to vv rather than to vm did not, at the time, recognize the existence of the pressure gradient contribution to the diffuse flux of appearing in Eq, 3.20, That is, as opposed to the present bi-velocity arguments, those earlier monovelocity arguments did not recognize the necessity for the ∇ p term in (3.20, However, it is shown in Appendix B that the ∇ p contribution to jv is negligible compared with that of ∇ T when interpreting both the thermophoretic and thermal transpiration experiments used in establishing the viability of 5.4, As such, those earlier experimental demonstrations of the validity of of the no-slip velocity boundary condition continue to remain valid in our current bi-velocity re-interpretation of these data
-
v is negligible compared with that of ∇ T when interpreting both the thermophoretic and thermal transpiration experiments used in establishing the viability of (5.4). As such, those earlier experimental demonstrations of the validity of of the no-slip volume velocity boundary condition continue to remain valid in our current bi-velocity re-interpretation of these data
-
-
-
-
39
-
-
33749125246
-
Measurements of phoretic velocities of aerosol particles in microgravity conditions
-
Prodi F., Santachiara G., Travaini S., Vedernikov A., Dubois F., Minetti C., Legros J.C., and Chernyak V.G. Measurements of phoretic velocities of aerosol particles in microgravity conditions. Atmos. Res. 82 (2006) 183-189
-
(2006)
Atmos. Res.
, vol.82
, pp. 183-189
-
-
Prodi, F.1
Santachiara, G.2
Travaini, S.3
Vedernikov, A.4
Dubois, F.5
Minetti, C.6
Legros, J.C.7
Chernyak, V.G.8
-
40
-
-
34250807849
-
Measurements of thermophoretic velocities of aerosol particles in microgravity conditions in different carrier gases
-
Prodi F., Santachiara G., Di Matteo L., Vedernikov A., Beresnev S.A., and Chernyak V.G. Measurements of thermophoretic velocities of aerosol particles in microgravity conditions in different carrier gases. Aerosol Sci. 38 (2007) 645-655
-
(2007)
Aerosol Sci.
, vol.38
, pp. 645-655
-
-
Prodi, F.1
Santachiara, G.2
Di Matteo, L.3
Vedernikov, A.4
Beresnev, S.A.5
Chernyak, V.G.6
-
42
-
-
0001904431
-
-
Fisher S.S. (Ed), AIAA, New York
-
Talbot L. In: Fisher S.S. (Ed). Rarefied Gas Dynamics. Prog. Astronaut & Aeronaut. vol. 74, part 1 (1981), AIAA, New York 467-xxx
-
(1981)
Prog. Astronaut & Aeronaut.
, vol.74 PART 1
-
-
Talbot, L.1
-
44
-
-
0036027965
-
Measurements of diffusiophoretic velocities of aerosol particles in the transition region
-
Prodi F., Santachiara G., and Cornetti C. Measurements of diffusiophoretic velocities of aerosol particles in the transition region. J. Aerosol Sci. 33 (2002) 181-188
-
(2002)
J. Aerosol Sci.
, vol.33
, pp. 181-188
-
-
Prodi, F.1
Santachiara, G.2
Cornetti, C.3
-
45
-
-
0038595314
-
The theory of thermophoresis and diffusiophoresis of aerosol particles and their experimental testing
-
Hidy G.M., and Brock J.R. (Eds), Pergamon Press, Oxford
-
Derjaguin B., and Yalamov Y. The theory of thermophoresis and diffusiophoresis of aerosol particles and their experimental testing. In: Hidy G.M., and Brock J.R. (Eds). Topics in Current Aerosol Research, vol. 3, part 2 (1972), Pergamon Press, Oxford 1-200
-
(1972)
Topics in Current Aerosol Research, vol. 3, part 2
, pp. 1-200
-
-
Derjaguin, B.1
Yalamov, Y.2
-
46
-
-
33748924841
-
Elementary kinematical model of thermal diffusion in liquids and gases
-
036306-1-20
-
Brenner H. Elementary kinematical model of thermal diffusion in liquids and gases. Phys. Rev. E 74 (2006) 036306-1-20
-
(2006)
Phys. Rev. E
, vol.74
-
-
Brenner, H.1
-
47
-
-
67349178095
-
Pressure-driven diffusive gas flows in micro-channels: From the Knudsen to the continuum regime
-
Dongari N., Sharma A., and Durst F. Pressure-driven diffusive gas flows in micro-channels: From the Knudsen to the continuum regime. Microfluidics Nanofluidics (2009) 679-692
-
(2009)
Microfluidics Nanofluidics
, pp. 679-692
-
-
Dongari, N.1
Sharma, A.2
Durst, F.3
-
51
-
-
85108215622
-
-
s = 0 for an isentropic process, over(s, ̂) = const., as would be expected to hold in such circumstances
-
s = 0 for an isentropic process, over(s, ̂) = const., as would be expected to hold in such circumstances
-
-
-
-
52
-
-
85108206799
-
-
Analogous to the case for entropy [38, to the extent that the constitutive equation (7.5) is valid, it would follow from (7.7) that πv, 0 for an isochoric process, over(v, ̂) = const, as would be expected in such circumstances
-
v = 0 for an isochoric process, over(v, ̂) = const., as would be expected in such circumstances
-
-
-
-
53
-
-
0006886326
-
Fourier's law: A challenge to theorists
-
Imperial College Press, London
-
Bonetto F., Lebowitz J.L., and Rey-Bellet L. Fourier's law: A challenge to theorists. Mathematical Physics (2000), Imperial College Press, London 128-150
-
(2000)
Mathematical Physics
, pp. 128-150
-
-
Bonetto, F.1
Lebowitz, J.L.2
Rey-Bellet, L.3
-
56
-
-
0003107810
-
On the reciprocal relations of Onsager
-
Coleman B.D., and Truesdell C. On the reciprocal relations of Onsager. J. Chem. Phys. 33 (1960) 28-31
-
(1960)
J. Chem. Phys.
, vol.33
, pp. 28-31
-
-
Coleman, B.D.1
Truesdell, C.2
-
57
-
-
73449140517
-
-
By unbiased we mean without constitutive commitment except for the fact that the specific momentum density appearing in the momentum equation is vm (see Ref, 45, that the velocity appearing in the kinetic-energy term of the energy equation is also vm, and that the constitutive equation for the diffuse entropy flux is given by Eq, 3.2) in which the constitutive equation for the symbol q is left open. The basis for these particular constitutive choices is discussed in Refs, 1,2
-
m, and that the constitutive equation for the diffuse entropy flux is given by Eq. (3.2) in which the constitutive equation for the symbol q is left open. The basis for these particular constitutive choices is discussed in Refs. [1,2]
-
-
-
-
58
-
-
67349171698
-
Inconsistency of a dissipative contribution to the mass flux in hydrodynamics
-
(8 pp.)
-
Öttinger H.C., Struchtrup H., and Liu M. Inconsistency of a dissipative contribution to the mass flux in hydrodynamics. Phys. Rev. E 80 (2009) 056303 (8 pp.)
-
(2009)
Phys. Rev. E
, vol.80
, pp. 056303
-
-
Öttinger, H.C.1
Struchtrup, H.2
Liu, M.3
-
59
-
-
84980081651
-
On the kinetic theory of rarefied gases
-
Grad H. On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331-407
-
(1949)
Comm. Pure Appl. Math.
, vol.2
, pp. 331-407
-
-
Grad, H.1
-
60
-
-
0001294845
-
Principles of the kinetic theory of gases
-
Flügge S. (Ed), Springer, Berlin
-
Grad H. Principles of the kinetic theory of gases. In: Flügge S. (Ed). Handbuch der Physik XII: Thermodynamik der Gase (1958), Springer, Berlin 205-294
-
(1958)
Handbuch der Physik XII: Thermodynamik der Gase
, pp. 205-294
-
-
Grad, H.1
-
61
-
-
0001351025
-
Asympototic theory of the Boltzmann equation
-
Grad H. Asympototic theory of the Boltzmann equation. Phys. Fluids 6 (1963) 147-181
-
(1963)
Phys. Fluids
, vol.6
, pp. 147-181
-
-
Grad, H.1
-
62
-
-
73449139503
-
-
That the work of the Russian school has seemingly failed to impress Western-based LIT researchers (as judged by the paucity of citations thereto in the Western literature devoted to irreversible thermodynamics) presumably originates from the fact that this Russian work fails to cite data in support of its thesis
-
That the work of the Russian school has seemingly failed to impress Western-based LIT researchers (as judged by the paucity of citations thereto in the Western literature devoted to irreversible thermodynamics) presumably originates from the fact that this Russian work fails to cite data in support of its thesis
-
-
-
-
63
-
-
26344468007
-
A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems
-
Bhatnagar P.L., Gross E.P., and Krook M. A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (1954) 511-525
-
(1954)
Phys. Rev.
, vol.94
, pp. 511-525
-
-
Bhatnagar, P.L.1
Gross, E.P.2
Krook, M.3
|