메뉴 건너뛰기




Volumn 11, Issue 5, 2009, Pages 559-571

Modeling and simulation of apple drying, using artificial neural network and neuro-taguchi's method

Author keywords

Apple drying; Artificial neural network; Modeling; Neuro taguchi; Simulation

Indexed keywords

MALUS X DOMESTICA;

EID: 73449145681     PISSN: 16807073     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (16)

References (40)
  • 1
    • 0032142416 scopus 로고    scopus 로고
    • Neural networks and the future of sensory evaluation
    • Bomio, M. 1998. Neural Networks and the Future of Sensory Evaluation. Food Technol., 52(8): 62.
    • (1998) Food Technol. , vol.52 , Issue.8 , pp. 62
    • Bomio, M.1
  • 2
    • 0001201689 scopus 로고
    • A neural network correlation for the variation of viscosity of sucrose agents solutions with temperature and concentration
    • Bouchard, C., and Grandjean, P. A. 1995. A Neural Network Correlation for the Variation of Viscosity of Sucrose Agents Solutions with Temperature and Concentration. Food Sci. Technol., 28: 157.
    • (1995) Food Sci. Technol. , vol.28 , pp. 157
    • Bouchard, C.1    Grandjean, P.A.2
  • 3
    • 0032486814 scopus 로고    scopus 로고
    • Dynamic ultrafiltration of proteins: A neural network approach
    • Bowen, W. R., Jopnes, M. J. and Yousef, H. N. S. 1998 a. Dynamic Ultrafiltration of Proteins: A Neural Network Approach. J. Membrane Sci., 146: 225.
    • (1998) J. Membrane Sci. , vol.146 , pp. 225
    • Bowen, W.R.1    Jopnes, M.J.2    Yousef, H.N.S.3
  • 4
    • 0032216181 scopus 로고    scopus 로고
    • Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach
    • Bowen, W. R., Jopnes, M. J. and Yousef, H. N. S. 1998 b. Prediction of the Rate of Crossflow Membrane Ultrafiltration of Colloids: A Neural Network Approach. Chem. Eng. Sci., 53: 3793.
    • (1998) Chem. Eng. Sci. , vol.53 , pp. 3793
    • Bowen, W.R.1    Jopnes, M.J.2    Yousef, H.N.S.3
  • 7
    • 0038221372 scopus 로고    scopus 로고
    • Air drying behavior of dwarf cavendish and gros michel banana slice
    • Demirel, D. and Turhan, M. 2003. Air Drying Behavior of Dwarf Cavendish and Gros Michel Banana Slice. J. Food Eng. 59: 1.
    • (2003) J. Food Eng. , vol.59 , pp. 1
    • Demirel, D.1    Turhan, M.2
  • 8
    • 0026806616 scopus 로고
    • A hybrid neural network: First principle approach to process modeling
    • Dimitris, C. P. and Lyle, H. U. 1992. A Hybrid Neural Network: First Principle Approach to Process Modeling. ALChE J., 38(10): 1499.
    • (1992) ALChE J. , vol.38 , Issue.10 , pp. 1499
    • Dimitris, C.P.1    Lyle, H.U.2
  • 9
    • 0028987364 scopus 로고
    • Dynamic modeling of crossflow microfiltration using neural networks
    • Dornier, M., Decloux, M., Trystram, G. and Lebert, A. 1995. Dynamic Modeling of Crossflow Microfiltration Using Neural Networks. J. Membrane Sci., 98: 263.
    • (1995) J. Membrane Sci. , vol.98 , pp. 263
    • Dornier, M.1    Decloux, M.2    Trystram, G.3    Lebert, A.4
  • 13
    • 0000750567 scopus 로고
    • Neural networks vs. principal component regression for prediction of wheat flour loaf volume in baking tests
    • Horimoto, Y., Durance, T., Nakai, S. and Lukow, O. M. 1995. Neural Networks vs. Principal Component Regression for Prediction of Wheat Flour Loaf Volume in Baking Tests. J. Food Sci., 60(3): 429.
    • (1995) J. Food Sci. , vol.60 , Issue.3 , pp. 429
    • Horimoto, Y.1    Durance, T.2    Nakai, S.3    Lukow, O.M.4
  • 14
    • 0032591132 scopus 로고    scopus 로고
    • Thermal conductivity prediction of fruits and vegetables using neural networks
    • Hussain, M. A. and Rahman, M. S. 1999. Thermal Conductivity Prediction of Fruits and Vegetables Using Neural Networks. Int. J. Food Proper., 2(2): 121.
    • (1999) Int. J. Food Proper. , vol.2 , Issue.2 , pp. 121
    • Hussain, M.A.1    Rahman, M.S.2
  • 15
    • 0034069272 scopus 로고    scopus 로고
    • Implementation of an inverse-modelbased control strategy using neural networks on a partially simulated exothermic reactor
    • Hussain, M. A. and Kershenbaum, L. S. 2000. Implementation of an Inverse-modelbased Control Strategy Using Neural Networks on a Partially Simulated Exothermic Reactor. Ins. Chem. Engineers Tran S. I Chem. E, 78: 299.
    • (2000) Ins. Chem. Engineers Tran S. I Chem. E , vol.78 , pp. 299
    • Hussain, M.A.1    Kershenbaum, L.S.2
  • 16
    • 0036466560 scopus 로고    scopus 로고
    • Prediction of pores formation (porosity) in foods during drying: Generic models by the use of hybrid neural network
    • Hussain, M. A., Shafiur Rahman, M. and Ng, C. W. 2002. Prediction of Pores Formation (Porosity) in Foods during Drying: Generic Models by the Use of Hybrid Neural Network. J. Food Eng., 51: 239.
    • (2002) J. Food Eng. , vol.51 , pp. 239
    • Hussain, M.A.1    Shafiur Rahman, M.2    Ng, C.W.3
  • 18
    • 0029278204 scopus 로고
    • Optimal design of neural networks using the taguchi's method
    • Khaw, J. F. C., Lim, B. S. and Lim, L. E. N. 1995. Optimal Design of Neural Networks Using the Taguchi's Method. Neurocomputing, 7: 245.
    • (1995) Neurocomputing , vol.7 , pp. 245
    • Khaw, J.F.C.1    Lim, B.S.2    Lim, L.E.N.3
  • 19
    • 0001127525 scopus 로고    scopus 로고
    • Methodology of perform design considering workability in metal forming by the artificial neural network and taguchi's method
    • Ko, D. C., Kim, D. H., Kim, B. M. and Choi, J. C. 1998. Methodology of Perform Design Considering Workability in Metal Forming by the Artificial Neural Network and Taguchi's Method. J.Materials Process.Technol., 80-81: 487.
    • (1998) J.Materials Process.Technol. , vol.80-81 , pp. 487
    • Ko, D.C.1    Kim, D.H.2    Kim, B.M.3    Choi, J.C.4
  • 20
    • 0032664842 scopus 로고    scopus 로고
    • Training artificial neural networks using taguchi's method
    • Macleod, C., Dror, G. and Maxwell, G. 1999. Training Artificial Neural Networks Using Taguchi's Method. Art. Intell. Rev., 13: 177.
    • (1999) Art. Intell. Rev. , vol.13 , pp. 177
    • Macleod, C.1    Dror, G.2    Maxwell, G.3
  • 21
    • 73449103439 scopus 로고
    • Dynamically Adjusting the Number of Hidden Units in a Neural Network
    • Maza, M. de. La., SPLIT net: 1991, Dynamically Adjusting the Number of Hidden Units in a Neural Network. Art. Neu. Networks, 647.
    • (1991) Art. Neu. Networks , pp. 647
    • Maza M. De. La1
  • 23
    • 0028484335 scopus 로고
    • Modeling chemical processes using prior knowledge and neural networks
    • Michael, L. T. and Mark, A. K. 1994. Modeling Chemical Processes Using Prior Knowledge and Neural Networks. ALChE J., 40(8): 1328.
    • (1994) ALChE J. , vol.40 , Issue.8 , pp. 1328
    • Michael, L.T.1    Mark, A.K.2
  • 25
    • 0003029188 scopus 로고    scopus 로고
    • Food quality prediction with neural networks
    • Ni, H. and Gunasekaran, S. 1998. Food Quality Prediction with Neural Networks. Food Technol, 52(10): 60.
    • (1998) Food Technol , vol.52 , Issue.10 , pp. 60
    • Ni, H.1    Gunasekaran, S.2
  • 26
    • 0028989580 scopus 로고
    • Simulation of membrane separation by neural networks
    • Niemi, H., Bulsari, A. and Palossari, S. 1995. Simulation of Membrane Separation by Neural Networks. J. Membrane Sci., 102: 185.
    • (1995) J. Membrane Sci. , vol.102 , pp. 185
    • Niemi, H.1    Bulsari, A.2    Palossari, S.3
  • 27
    • 0006739624 scopus 로고    scopus 로고
    • Electronic nose technology: An overview of current technology and commercial availability
    • Payne, J. S. 1998. Electronic Nose Technology: An Overview of Current Technology and Commercial Availability. Food Sci.Technol. Today, 12(4): 196.
    • (1998) Food Sci.Technol. Today , vol.12 , Issue.4 , pp. 196
    • Payne, J.S.1
  • 29
    • 0141676388 scopus 로고    scopus 로고
    • Dynamic prediction of milk ultrafiltration performance: A neural network approach
    • Razavi, S. M. A., Mousavi, S. M. and Mortazavi, S. A. 2003. Dynamic Prediction of Milk Ultrafiltration Performance: A Neural Network Approach. Chem. Eng. Sci., 58: 4185.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 4185
    • Razavi, S.M.A.1    Mousavi, S.M.2    Mortazavi, S.A.3
  • 30
    • 0742305956 scopus 로고    scopus 로고
    • Application of neural networks for crossflow milk ultrafiltration simulation
    • Razavi, M. A., Mortazavi, A. and Mousavi, M. 2004. Application of Neural Networks for Crossflow Milk Ultrafiltration Simulation. Int. Dairy J., 14: 69.
    • (2004) Int. Dairy J. , vol.14 , pp. 69
    • Razavi, M.A.1    Mortazavi, A.2    Mousavi, M.3
  • 31
    • 0001223496 scopus 로고
    • Prediction of dough rheological properties using neural networks
    • Ruan, R., Almaer, S. and Zhang, J. 1995. Prediction of Dough Rheological Properties Using Neural Networks. Cereal Chem., 72: 308.
    • (1995) Cereal Chem. , vol.72 , pp. 308
    • Ruan, R.1    Almaer, S.2    Zhang, J.3
  • 33
    • 0038367721 scopus 로고    scopus 로고
    • Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity
    • Sablani, S. S. and Rahman, M. S. 2003. Using Neural Networks to Predict Thermal Conductivity of Food as a Function of Moisture Content, Temperature and Apparent Porosity. Food Res. Int., 36: 617.
    • (2003) Food Res. Int. , vol.36 , pp. 617
    • Sablani, S.S.1    Rahman, M.S.2
  • 36
    • 0034672848 scopus 로고    scopus 로고
    • Neural network models for ultrafiltration and backwashing
    • Teodosiu, C., Pastravanu, O. and Macoveanu, M. 2000. Neural Network Models for Ultrafiltration and Backwashing. Water Res., 34: 4371.
    • (2000) Water Res. , vol.34 , pp. 4371
    • Teodosiu, C.1    Pastravanu, O.2    Macoveanu, M.3
  • 37
    • 0006708941 scopus 로고
    • Modeling chemical process using prior knowledge and neural networks
    • Thompson, M. L. and Kremer, M. A. 1992. Modeling Chemical Process Using Prior Knowledge and Neural Networks. ALChE J., 38(1): 41.
    • (1992) ALChE J. , vol.38 , Issue.1 , pp. 41
    • Thompson, M.L.1    Kremer, M.A.2
  • 38
    • 0004045451 scopus 로고
    • Third Edition. McGraw-Hill International Edition
    • Treybal, R. E. 1980. Mass Transfer Operations (Third Edition). McGraw-Hill International Edition.
    • (1980) Mass Transfer Operations
    • Treybal, R.E.1
  • 39
    • 44049116937 scopus 로고
    • Neural network applications in chemical engineering
    • Venkatasubramanian, V. and Mc Avoy, T. J. 1992. Neural Network Applications in Chemical Engineering. Computer Chem.Eng., 16(4): V.
    • (1992) Computer Chem.Eng. , vol.16 , Issue.4
    • Venkatasubramanian, V.1    Mc Avoy, T.J.2
  • 40
    • 0026274729 scopus 로고
    • A self growing learning algorithm for determining the appropriate number of hidden units
    • Singapore
    • Wang, S. and Hsu, C. 1991. A Self Growing Learning Algorithm for Determining the Appropriate Number of Hidden Units. Troc. Int. Joint Cons. on Neural Networks, Singapore.
    • (1991) Troc. Int. Joint Cons. on Neural Networks
    • Wang, S.1    Hsu, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.