메뉴 건너뛰기




Volumn 59, Issue 1, 2010, Pages 115-125

Random differential operational calculus: Theory and applications

Author keywords

Mean fourth calculus; Mean square calculus; Random chain rule; Random differential equation

Indexed keywords

CHAIN RULES; DIFFERENTIAL PROBLEMS; FOURTH ORDER; INTEGRAL CALCULUS; MEAN SQUARE; PRODUCT RULE; RANDOM DIFFERENTIAL EQUATIONS; VARIABLE COEFFICIENTS;

EID: 73449103851     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2009.08.061     Document Type: Article
Times cited : (77)

References (11)
  • 2
    • 49849117537 scopus 로고
    • Random ordinary differential equations
    • Strand J.L. Random ordinary differential equations. J. Differential Equations 7 (1973) 538-553
    • (1973) J. Differential Equations , vol.7 , pp. 538-553
    • Strand, J.L.1
  • 6
    • 0042819717 scopus 로고    scopus 로고
    • Pathwise approximation of random ordinary differential equations
    • Grüne L., and Kloeden P.E. Pathwise approximation of random ordinary differential equations. BIT 41 4 (2001) 711-721
    • (2001) BIT , vol.41 , Issue.4 , pp. 711-721
    • Grüne, L.1    Kloeden, P.E.2
  • 8
    • 61549089341 scopus 로고    scopus 로고
    • Random linear-quadratic mathematical models: Computing explicit solutions and applications
    • Cortés J.C., Jódar L., and Villafuerte L. Random linear-quadratic mathematical models: Computing explicit solutions and applications. Math. Comp. Simulation 79 7 (2009) 2076-2090
    • (2009) Math. Comp. Simulation , vol.79 , Issue.7 , pp. 2076-2090
    • Cortés, J.C.1    Jódar, L.2    Villafuerte, L.3
  • 9
    • 14844358219 scopus 로고    scopus 로고
    • The approximate solutions of some stochastic differential equations using transformations
    • El-Tawil M.A. The approximate solutions of some stochastic differential equations using transformations. Appl. Math. Comput. 164 1 (2005) 167-178
    • (2005) Appl. Math. Comput. , vol.164 , Issue.1 , pp. 167-178
    • El-Tawil, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.