메뉴 건너뛰기




Volumn 3, Issue , 2009, Pages 1345-1354

E-mail classification based on NMF

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ACCURACY; CLASSIFICATION ACCURACY; CLASSIFICATION METHODS; COMPUTATIONAL EFFORT; EMAIL CLASSIFICATION; INTERPRETABILITY; LOW RANK APPROXIMATIONS; NEW APPROACHES; NON-NEGATIVITY; NONNEGATIVE MATRIX FACTORIZATION;

EID: 73449097160     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (21)
  • 1
  • 3
    • 36749071484 scopus 로고    scopus 로고
    • Svd based initialization: A head start for nonnegative matrix factorization
    • C. BOUTSIDIS AND E. GALLOPOULOS, Svd based initialization: A head start for nonnegative matrix factorization, Pattern Recogn., 41 (2008), pp. 1350-1362.
    • (2008) Pattern Recogn , vol.41 , pp. 1350-1362
    • BOUTSIDIS, C.1    GALLOPOULOS, E.2
  • 5
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • I. S. DHILLON AND D. S. MODHA, Concept decompositions for large sparse text data using clustering, Machine Learning, 42 (2001), pp. 143-175.
    • (2001) Machine Learning , vol.42 , pp. 143-175
    • DHILLON, I.S.1    MODHA, D.S.2
  • 6
    • 33751097630 scopus 로고    scopus 로고
    • Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition
    • P. DRINEAS, R. KANNAN, M. W. MAHONEY, AND L. A, Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition, SIAM Journal on Computing, 36 (2004), pp. 184-206.
    • (2004) SIAM Journal on Computing , vol.36 , pp. 184-206
    • DRINEAS, P.1    KANNAN, R.2    MAHONEY, M.W.3    A, L.4
  • 8
    • 84892122106 scopus 로고    scopus 로고
    • Spam filtering based on latent semantic indexing
    • 2, Springer
    • W. N. GANSTERER, A. JANECEK, AND R. NEUMAYER, Spam filtering based on latent semantic indexing, in Survery of Text Mining 2, vol. 2, Springer, 2008, pp. 165-183.
    • (2008) Survery of Text Mining , vol.2 , pp. 165-183
    • GANSTERER, W.N.1    JANECEK, A.2    NEUMAYER, R.3
  • 9
    • 71649112504 scopus 로고    scopus 로고
    • E-mail classification for phishing defense
    • to appear in
    • W. N. GANSTERER AND D. POELZ, E-mail classification for phishing defense, to appear in Proceedings of ECIR 2009.
    • (2009) Proceedings of ECIR
    • GANSTERER, W.N.1    POELZ, D.2
  • 12
    • 70349208180 scopus 로고    scopus 로고
    • On the relationship between feature selection and classification accuracy
    • A. JANECEK AND W. N. GANSTERER, On the relationship between feature selection and classification accuracy, JMLR: Workshop and Conference Proceedings, 4 (2008), pp. 90-105.
    • (2008) JMLR: Workshop and Conference Proceedings , vol.4 , pp. 90-105
    • JANECEK, A.1    GANSTERER, W.N.2
  • 14
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. LEE AND H. S. SEUNG, Learning the parts of objects by non-negative matrix factorization., Nature, 401 (1999), pp. 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • LEE, D.D.1    SEUNG, H.S.2
  • 16
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. PAATERO AND U. TAPPER, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • PAATERO, P.1    TAPPER, U.2
  • 20
    • 12344317125 scopus 로고    scopus 로고
    • Improving non-negative matrix factorizations through structured initialization
    • -, Improving non-negative matrix factorizations through structured initialization, Pattern Recognition, 37 (2004), pp. 2217-2232.
    • (2004) Pattern Recognition , vol.37 , pp. 2217-2232
    • WILD, S.M.1    CURRY, J.H.2    DOUGHERTY, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.