-
1
-
-
0025417832
-
What does the entropy condition mean in traffic flow theory
-
Ansorge, R. 1990. What does the entropy condition mean in traffic flow theory. Transportation Res. Part B 24(2) 133-143.
-
(1990)
Transportation Res. Part B
, vol.24
, Issue.2
, pp. 133-143
-
-
Ansorge, R.1
-
2
-
-
0002853474
-
Two-capacity phenomenon at freeway bottlenecks: A basis for ramp metering?
-
Bank, J. H. 1991a. Two-capacity phenomenon at freeway bottlenecks: A basis for ramp metering? Transportation Res. Record 132083-90.
-
(1991)
Transportation Res. Record
, vol.1320
, pp. 83-90
-
-
Bank, J.H.1
-
3
-
-
0000439484
-
The two-capacity phenomenon: Some theoretical issues
-
Bank, J. H. 1991b. The two-capacity phenomenon: Some theoretical issues. Transportation Res. Record 1320234-241.
-
(1991)
Transportation Res. Record
, vol.1320
, pp. 234-241
-
-
Bank, J.H.1
-
4
-
-
0031594062
-
Bivariate relations in nearly stationary highway traffic
-
Cassidy, M. J. 1998. Bivariate relations in nearly stationary highway traffic. Transportation Res. Part B 3249-59.
-
(1998)
Transportation Res
, vol.32
, Issue.PART B
, pp. 49-59
-
-
Cassidy, M.J.1
-
5
-
-
0032599748
-
Some traffic features at freeway bottlenecks
-
Cassidy, M. J., R. L. Bertini. 1999. Some traffic features at freeway bottlenecks. Transportation Res. Part B 3325-42.
-
(1999)
Transportation Res
, vol.33
, Issue.PART B
, pp. 25-42
-
-
Cassidy, M.J.1
Bertini, R.L.2
-
6
-
-
0016884759
-
A deterministic traffic flow model for the two- regime approach
-
Ceder, A. 1976. A deterministic traffic flow model for the two- regime approach. Transportation Res. Record 56716-32.
-
(1976)
Transportation Res. Record
, vol.567
, pp. 16-32
-
-
Ceder, A.1
-
7
-
-
0016880793
-
Further evaluation of single- and two- regime traffic flow models
-
Ceder, A., A. D. May. 1976. Further evaluation of single- and two- regime traffic flow models. Transportation Res. Record 5671-15.
-
(1976)
Transportation Res. Record
, vol.567
, pp. 1-15
-
-
Ceder, A.1
May, A.D.2
-
8
-
-
0001690234
-
Polygonal approximations of solutions of initial value-problem for a conservation law
-
Dafermos, C. M. 1972. Polygonal approximations of solutions of initial value-problem for a conservation law. J. Math. Anal. Appl. 38(1) 33-41.
-
(1972)
J. Math. Anal. Appl
, vol.38
, Issue.1
, pp. 33-41
-
-
Dafermos, C.M.1
-
9
-
-
0029416696
-
A finite difference approximation of the kinematic wave model of traffic flow
-
Daganzo, C. F. 1995. A finite difference approximation of the kinematic wave model of traffic flow. Transportation Res. Part B 29(4) 261-276.
-
(1995)
Transportation Res. Part B
, vol.29
, Issue.4
, pp. 261-276
-
-
Daganzo, C.F.1
-
10
-
-
69249210133
-
A statistical analysis of speed density hypothesis
-
L. C. Edie, R. Herman, R. Rothery, eds, American Elsevier Publishing Company Inc, New York
-
Drake, J. S., J. L. Schofer, A. D. May. 1967. A statistical analysis of speed density hypothesis. L. C. Edie, R. Herman, R. Rothery, eds. Proc. Third Internat. Sympos. Theory of Traffic Flow, American Elsevier Publishing Company Inc., New York.
-
(1967)
Proc. Third Internat. Sympos. Theory of Traffic Flow
-
-
Drake, J.S.1
Schofer, J.L.2
May, A.D.3
-
11
-
-
0003083208
-
Car-following and steady-state theory for noncon- gested traffic
-
Eddie, L. C. 1961. Car-following and steady-state theory for noncon- gested traffic. Oper. Res. 9(1) 66-76.
-
(1961)
Oper. Res
, vol.9
, Issue.1
, pp. 66-76
-
-
Eddie, L.C.1
-
13
-
-
0023163224
-
An interpretation of speed-flow-concentration relationships using catastrophe theory
-
Hall, F. L. 1987. An interpretation of speed-flow-concentration relationships using catastrophe theory. Transportation Res. Part A 21191-201.
-
(1987)
Transportation Res. Part A
, vol.21
, pp. 191-201
-
-
Hall, F.L.1
-
14
-
-
0022954498
-
Further analysis of the flow- concentration relationship
-
Hall, F. L., M. A. Gunter. 1986. Further analysis of the flow- concentration relationship. Transportation Res. Record 10911-9.
-
(1986)
Transportation Res. Record
, vol.1091
, pp. 1-9
-
-
Hall, F.L.1
Gunter, M.A.2
-
16
-
-
0030161771
-
Efficient implementation of weighted ENOschemes
-
Jiang, G. S., C. W. Shu. 1996. Efficient implementation of weighted ENOschemes. J. Computational Phys. 126(1) 202-228.
-
(1996)
J. Computational Phys
, vol.126
, Issue.1
, pp. 202-228
-
-
Jiang, G.S.1
Shu, C.W.2
-
17
-
-
0037353363
-
The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model
-
Jin, W. L., H. M. Zhang. 2003. The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model. Transportation Res. Part B 37(3) 207-223.
-
(2003)
Transportation Res. Part B
, vol.37
, Issue.3
, pp. 207-223
-
-
Jin, W.L.1
Zhang, H.M.2
-
19
-
-
0002562202
-
Structure and parameters of clusters in traffic flow
-
Kerner, B. S., P. Konhauser. 1994. Structure and parameters of clusters in traffic flow. Physical Rev. E 50(1) 54-83.
-
(1994)
Physical Rev. E
, vol.50
, Issue.1
, pp. 54-83
-
-
Kerner, B.S.1
Konhauser, P.2
-
20
-
-
0000329643
-
Experimental features and characteristics of traffic jams
-
Kerner, B. S., H. Rehborn. 1996. Experimental features and characteristics of traffic jams. Physical Rev. E 53(2) R1297-R1300.
-
(1996)
Physical Rev. E
, vol.53
, Issue.2
-
-
Kerner, B.S.1
Rehborn, H.2
-
21
-
-
0021028456
-
Some findings and an overview on vehicular flow characteristics
-
V. F. Hurdle, R. Hauer, G. N. Stewart, eds, University of Toronto Press, Toronto
-
Koshi, M., M. Iwasaki, I. Ohkura. 1983. Some findings and an overview on vehicular flow characteristics. V. F. Hurdle, R. Hauer, G. N. Stewart, eds. Proc. 8th Internat. Sympos. Transportation and Traffic Theory, University of Toronto Press, Toronto, 403-426.
-
(1983)
Proc. 8th Internat. Sympos. Transportation and Traffic Theory
, pp. 403-426
-
-
Koshi, M.1
Iwasaki, M.2
Ohkura, I.3
-
22
-
-
0003261490
-
Hyperbolic systems of conservation laws and the mathematical theory of shock waves
-
SIAM, Philadelphia
-
Lax, P. 1973. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. SIAM Regional Conf. Ser. Appl. Math., No. 11, SIAM, Philadelphia.
-
(1973)
SIAM Regional Conf. Ser. Appl. Math
, vol.11
-
-
Lax, P.1
-
23
-
-
0003023662
-
The Godunov scheme and what it means for first order traffic flow models
-
J. B. Lesort, ed, Elsevier Science Ltd, Lyon, France
-
Lebacque, J. P. 1996. The Godunov scheme and what it means for first order traffic flow models. J. B. Lesort, ed. Proc. 13th Internat. Sympos. Transportation Traffic Theory. Elsevier Science Ltd, Lyon, France, 647-677.
-
(1996)
Proc. 13th Internat. Sympos. Transportation Traffic Theory
, pp. 647-677
-
-
Lebacque, J.P.1
-
24
-
-
0003671760
-
-
ETH Zurich, Birkhauser Verlag, Basel, Switzerland
-
LeVeque, R. J. 1992. Numerical Methods for Conservation Laws, Lecture in Mathematics. ETH Zurich, Birkhauser Verlag, Basel, Switzerland.
-
(1992)
Numerical Methods for Conservation Laws, Lecture in Mathematics
-
-
LeVeque, R.J.1
-
25
-
-
0000090588
-
On kinetic wave II: A theory of traffic flow on crowded roads
-
Lighthill, M. J., G. B. Whitham. 1955. On kinetic wave II: A theory of traffic flow on crowded roads. Proc. Roy. Soc. London, Ser. A 229(1178) 317-345.
-
(1955)
Proc. Roy. Soc. London, Ser. A
, vol.229
, Issue.1178
, pp. 317-345
-
-
Lighthill, M.J.1
Whitham, G.B.2
-
26
-
-
0037353501
-
A theoretical probe of a German experiment on stationary moving traffic jams
-
Lin, W. H., H. K. Lo. 2003. A theoretical probe of a German experiment on stationary moving traffic jams. Transportation Res. Part B 37(3) 251-261.
-
(2003)
Transportation Res. Part B
, vol.37
, Issue.3
, pp. 251-261
-
-
Lin, W.H.1
Lo, H.K.2
-
27
-
-
39749105993
-
Explicit construction of entropy solutions for the Lighthill-Whitham- Richards traffic flow model with a piecewise quadratic flow-density relationship
-
Lu, Y., S. C. Wong, M. Zhang, C.-W. Shu, W. Chen. 2008. Explicit construction of entropy solutions for the Lighthill-Whitham- Richards traffic flow model with a piecewise quadratic flow-density relationship. Transportation Res. Part B 42(4) 355-372.
-
(2008)
Transportation Res. Part B
, vol.42
, Issue.4
, pp. 355-372
-
-
Lu, Y.1
Wong, S.C.2
Zhang, M.3
Shu, C.-W.4
Chen, W.5
-
28
-
-
0001844855
-
A moving mesh numerical method for hyperbolic conservation laws
-
Lucier, B. J. 1986. A moving mesh numerical method for hyperbolic conservation laws. Math. Comput. 4659-69.
-
(1986)
Math. Comput
, vol.46
, pp. 59-69
-
-
Lucier, B.J.1
-
29
-
-
0001773404
-
Non-integer car-following models
-
May, A. D., E. M. Keller. 1967. Non-integer car-following models. Highway Res. Record 19919-32.
-
(1967)
Highway Res. Record
, vol.199
, pp. 19-32
-
-
May, A.D.1
Keller, E.M.2
-
30
-
-
0021473483
-
Analysis of interrupted traffic flow by finite-difference methods
-
Michalopoulos, P. G., D. E. Beskos, J. K. Lin. 1984. Analysis of interrupted traffic flow by finite-difference methods. Transportation Res. Part B 18(4-5) 409-421.
-
(1984)
Transportation Res. Part B
, vol.18
, Issue.4-5
, pp. 409-421
-
-
Michalopoulos, P.G.1
Beskos, D.E.2
Lin, J.K.3
-
31
-
-
0021413939
-
Riemann solvers, the entropy condition, and difference approximations
-
Osher, S. J. 1984. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21(2) 217-235.
-
(1984)
SIAM J. Numer. Anal
, vol.21
, Issue.2
, pp. 217-235
-
-
Osher, S.J.1
-
32
-
-
0002842180
-
Shock waves on the highway
-
Richards, P. I. 1956. Shock waves on the highway. Oper. Res. 4(1) 42-51.
-
(1956)
Oper. Res
, vol.4
, Issue.1
, pp. 42-51
-
-
Richards, P.I.1
-
33
-
-
0036870591
-
A note on the entropy solutions of the hydrodynamic model of traffic flow
-
Velan, S., M. Florian. 2002. A note on the entropy solutions of the hydrodynamic model of traffic flow. Transportation Sci. 36(4) 435-446.
-
(2002)
Transportation Sci
, vol.36
, Issue.4
, pp. 435-446
-
-
Velan, S.1
Florian, M.2
-
35
-
-
0036832844
-
A multi-class traffic flow model-An extension of LWR model with heterogeneous drivers
-
Wong, G. C. K., S. C. Wong. 2002a. A multi-class traffic flow model-An extension of LWR model with heterogeneous drivers. Transportation Res. Part A 36(9) 827-841.
-
(2002)
Transportation Res. Part A
, vol.36
, Issue.9
, pp. 827-841
-
-
Wong, G.C.K.1
Wong, S.C.2
-
36
-
-
0036722521
-
An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship
-
Wong, S. C., G. C. K. Wong. 2002b. An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship. Transportation Res. Part B 36(8) 683-706.
-
(2002)
Transportation Res. Part B
, vol.36
, Issue.8
, pp. 683-706
-
-
Wong, S.C.1
Wong, G.C.K.2
-
37
-
-
33747111035
-
Essence of conservation forms in the traveling wave solutions of higher-order traffic flow models
-
Zhang, P., S. C. Wong. 2006. Essence of conservation forms in the traveling wave solutions of higher-order traffic flow models. Physical Rev. E 74026109.
-
(2006)
Physical Rev. E
, vol.74
, pp. 026109
-
-
Zhang, P.1
Wong, S.C.2
-
38
-
-
29144469118
-
-
Zhang, P., S. C. Wong, S. Q. Dai. 2006a. Characteristic parameters of a wide cluster in a higher-order traffic flow model. Chinese Phys. Lett. 23516-519. Zhang, P., S. C. Wong, C. W. Shu. 2006b. A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. J. Computational Phys. 212(2) 739-756.
-
Zhang, P., S. C. Wong, S. Q. Dai. 2006a. Characteristic parameters of a wide cluster in a higher-order traffic flow model. Chinese Phys. Lett. 23516-519. Zhang, P., S. C. Wong, C. W. Shu. 2006b. A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. J. Computational Phys. 212(2) 739-756.
-
-
-
-
39
-
-
0242267633
-
A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model
-
Zhang, M., C. W. Shu, G. C. K. Wong, S. C. Wong. 2003. A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model. J. Computational Phys. 191(2) 639-659.
-
(2003)
J. Computational Phys
, vol.191
, Issue.2
, pp. 639-659
-
-
Zhang, M.1
Shu, C.W.2
Wong, G.C.K.3
Wong, S.C.4
|