-
1
-
-
4644342716
-
A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
-
doi:10.1137/S1064827503431090
-
Audusse, E., Bouchut, F., Bristeau, M. O., Klein, R. & Perthame, B. 2004 A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput.25, 2050-2065. (doi:10.1137/ S1064827503431090)
-
(2004)
SIAM J. Sci. Comput.
, vol.25
, pp. 2050-2065
-
-
Audusse, E.1
Bouchut, F.2
Bristeau, M.O.3
Klein, R.4
Perthame, B.5
-
2
-
-
0038746749
-
A wave-propagation method for conservation laws and balance laws with spatially varying flux functions
-
doi:10.1137/S106482750139738X
-
Bale, D., LeVeque, R. J., Mitran, S. &Rossmanith, J. A. 2002 A wave-propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput.24, 955-978. (doi:10.1137/ S106482750139738X)
-
(2002)
SIAM J. Sci. Comput
, vol.24
, pp. 955-978
-
-
Bale, D.1
LeVeque, R.2
Mitran, S.3
Rossmanith, J.A.4
-
3
-
-
0001762370
-
Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems
-
doi:10.1137/S0036142997315974
-
Berger, M. J. & LeVeque, R. J. 1998 Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35, 2298-2316. (doi:10.1137/S0036142997315974)
-
(1998)
SIAM J. Numer. Anal
, vol.35
, pp. 2298-2316
-
-
Berger, M.J.1
LeVeque, R.J.2
-
5
-
-
85140867769
-
In press. A finite-volume method for solving parabolic equations on logically Cartesian curved surface meshes
-
http://www.amath. washington.edu/∼calhoun/Surfaces/
-
Calhoun, D.A. Helzel, C. In press. A finite-volume method for solving parabolic equations on logically Cartesian curved surface meshesSIAM J. Sci. Comput. Seehttp://www.amath. washington.edu/∼calhoun/Surfaces/.
-
SIAM J. Sci. Comput.
-
-
Calhoun, D.A.1
Helzel, C.2
-
6
-
-
56349092136
-
A finite volume grid for solving hyperbolic problems on the sphere
-
Lyon, France, 17-21 July 2006, Berlin, Germany: Springer
-
Calhoun, D. A., Helzel, C. & LeVeque, R. J. 2008a A finite volume grid for solving hyperbolic problems on the sphere. In Hyperbolic problems: theory, numerics, applications. Proc. 11th Int. Conf. on Hyperbolic Problems, Lyon, France, 17-21 July 2006, pp. 355-362. Berlin, Germany: Springer.
-
(2008)
Hyperbolic problems: Theory, numerics, applications. Proc. 11th Int. Conf. on Hyperbolic Problems
, pp. 355-362
-
-
Calhoun, D.A.1
Helzel, C.2
LeVeque, R.J.3
-
7
-
-
56349111880
-
Logically rectangular finite volume grids and methods for 'circular' and 'spherical' domains
-
a, doi:10.1137/060664094
-
Calhoun, D. A., Helzel, C. & LeVeque, R. J. 2008b Logically rectangular finite volume grids and methods for 'circular' and 'spherical' domains. SIAM Rev. 50, 723-752. (doi:10.1137/060664094)
-
(2008)
SIAM Rev
, vol.50
, pp. 723-752
-
-
Calhoun, D.A.1
Helzel, C.2
LeVeque, R.J.3
-
8
-
-
55549111613
-
Well-balanced high order extensions of Godunov's method for semilinear balance laws
-
doi:10.1137/060674879
-
Castro, M., Gallardo, J. M., Lpez, J. A. & Paŕs, C. 2008 Well-balanced high order extensions of Godunov's method for semilinear balance laws. SIAM J. Numer. Anal. 46, 1012-1039. (doi:10.1137/060674879)
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1012-1039
-
-
Castro, M.1
Gallardo, J.M.2
Lpez, J.A.3
Paŕs, C.4
-
9
-
-
38949110674
-
Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation
-
doi:10.1016/ j.jcp.2007.10.027
-
George, D. L. 2008 Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J. Comput. Phys. 227, 3089-3113.(doi:10.1016/ j.jcp.2007.10.027)
-
(2008)
J. Comput. Phys.
, vol.227
, pp. 3089-3113
-
-
George, D.L.1
-
10
-
-
38949143135
-
Finite volume methods and adaptive refinement for global tsunami propagation and local inundation
-
George, D. L. & LeVeque, R. J. 2006 Finite volume methods and adaptive refinement for global tsunami propagation and local inundation. Sci. Tsunami Hazards 24, 319-328.
-
(2006)
Sci. Tsunami Hazards
, vol.24
, pp. 319-328
-
-
George, D.L.1
LeVeque, R.J.2
-
11
-
-
79958852332
-
High resolution methods and adaptive refinement for tsunami propagation and inundationIn Hyperbolic problems: Theory, numerics, applications.
-
Lyon, France, 17-21 July 2006, Berlin, Germany: Springer
-
George, D. L. & LeVeque, R. J. 2008 High resolution methods and adaptive refinement for tsunami propagation and inundation. In Hyperbolic problems: theory, numerics, applications. Proc. 11th Int. Conf. on Hyperbolic Problems, Lyon, France, 17-21 July 2006, pp. 541-550. Berlin, Germany: Springer.
-
(2008)
Proc. 11th Int. Conf. on Hyperbolic Problems
, pp. 541-550
-
-
George, D.L.1
LeVeque, R.J.2
-
12
-
-
0037144878
-
Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations
-
doi:10.1006/ jcph.2002
-
Giraldo, F. X., Hesthaven, J. S. & Warburton, T. 2002 Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181, 499-525. (doi:10.1006/ jcph.2002.7139)
-
(2002)
J. Comput. Phys.
, vol.181
, pp. 499-525
-
-
Giraldo, F.X.1
Hesthaven, J.S.2
Warburton, T.3
-
13
-
-
0034209981
-
A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms
-
doi:10.1142/S021820250100088X
-
Gosse, L. 2000 A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39, 135-159. (doi:10.1142/S021820250100088X)
-
(2000)
Comput. Math. Appl.
, vol.39
, pp. 135-159
-
-
Gosse, L.1
-
14
-
-
0035590547
-
A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms
-
doi:10.1142/S021820250100088X
-
Gosse, L. 2001 A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Meth. Appl. Sci. 11, 339-365. (doi:10.1142/S021820250100088X)Gosse, L. 2001 A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Meth. Appl. Sci. 11, 339-365. (doi:10.1142/S021820250100088X)
-
(2001)
Math. Models Meth. Appl. Sci.
, vol.11
, pp. 339-365
-
-
Gosse, L.1
-
15
-
-
0141795368
-
A three-dimensional, adaptive, Godunov-type model for global atmospheric flows
-
DOI 10.1175//2568.1
-
Hubbard, M. E. & Nikiforakis, N. 2003 A three-dimensional, adaptive, Godunov-type model for global atmospheric flows. Mon. Wea. Rev. 131, 1848-1864. (doi:10.1175//2568.1) (Pubitemid 37124278)
-
(2003)
Monthly Weather Review
, vol.131
, Issue.8 PART 2
, pp. 1848-1864
-
-
Hubbard, M.E.1
Nikiforakis, N.2
-
16
-
-
0001315315
-
Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm
-
DOI 10.1006/jcph.1998.6058, PII S0021999198960582
-
LeVeque, R. J. 1998 Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346-365. (doi:10.1006/jcph.1998.6058) (Pubitemid 128347128)
-
(1998)
Journal of Computational Physics
, vol.146
, Issue.1
, pp. 346-365
-
-
LeVeque, R.J.1
-
18
-
-
85129390987
-
High-resolution finite volume methods for the shallow water equations with bathymetry and dry states
-
Advanced numerical models for simulating tsunami waves and runup (eds P. L.-F. Liu, H. Yeh & C. Synolakis) Singapore: World Scientific
-
LeVeque, R. J. & George, D. L. 2007 High-resolution finite volume methods for the shallow water equations with bathymetry and dry states. In Advanced numerical models for simulating tsunami waves and runup (eds P. L.-F. Liu, H. Yeh &C. Synolakis). Advances in Coastal and Ocean Engineering, vol. 10, pp. 43-73. Singapore: World Scientific.
-
(2007)
Advances in Coastal and Ocean Engineering
, vol.10
, pp. 43-73
-
-
LeVeque, R.J.1
George, D.L.2
-
19
-
-
0031971955
-
The Cartesian method for solving partial differential equations in spherical geometry
-
doi:10.1016/S0377-0265(97)00038-9
-
Swarztrauber, P. N., Williamson, D. L. & Drake, J. B. 1997 The Cartesian method for solving partial differential equations in spherical geometry. Dyn. Atmos. Oceans 27, 679-706. (doi:10.1016/S0377-0265(97)00038-9)
-
(1997)
Dyn. Atmos. Oceans
, vol.27
, pp. 679-706
-
-
Swarztrauber, P.N.1
Williamson, D.L.2
Drake, J.B.3
-
20
-
-
0001440358
-
A standard test set for numerical approximations to the shallow water equations in spherical geometry
-
doi:10.1016/S0021-9991(05)80016-6
-
Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R. & Swarztrauber, P. N. 1992 A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102, 211-224. (doi:10.1016/S0021-9991(05)80016-6)
-
(1992)
J. Comput. Phys.
, vol.102
, pp. 211-224
-
-
Williamson, D.L.1
Drake, J.B.2
Hack, J.J.3
Jakob, R.4
Swarztrauber, P.N.5
|