-
2
-
-
33846990492
-
-
10.1063/1.2450645
-
H. T. Nembach, P. M. Pimentel, S. J. Hermsdoerfer, B. Leven, B. Hillebrands, and S. O. Demokritov, Appl. Phys. Lett. 90, 062503 (2007). 10.1063/1.2450645
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 062503
-
-
Nembach, H.T.1
Pimentel, P.M.2
Hermsdoerfer, S.J.3
Leven, B.4
Hillebrands, B.5
Demokritov, S.O.6
-
5
-
-
53849116131
-
-
10.1103/PhysRevB.78.104421
-
F. Montoncello, L. Giovannini, F. Nizzoli, H. Tanigawa, T. Ono, G. Gubbiotti, M. Madami, S. Tacchi, and G. Carlotti, Phys. Rev. B 78, 104421 (2008). 10.1103/PhysRevB.78.104421
-
(2008)
Phys. Rev. B
, vol.78
, pp. 104421
-
-
Montoncello, F.1
Giovannini, L.2
Nizzoli, F.3
Tanigawa, H.4
Ono, T.5
Gubbiotti, G.6
Madami, M.7
Tacchi, S.8
Carlotti, G.9
-
6
-
-
0742269936
-
-
10.1016/j.physb.2003.08.095
-
R. Hertel and J. Kirschner, Physica B 343, 206 (2004). 10.1016/j.physb.2003.08.095
-
(2004)
Physica B
, vol.343
, pp. 206
-
-
Hertel, R.1
Kirschner, J.2
-
7
-
-
34547612701
-
-
10.1109/TMAG.2006.878417
-
B. B. Maranville, R. D. McMichael, C. L. Dennis, C. A. Ross, and J. Y. Cheng, IEEE Trans. Magn. 42, 2951 (2006). 10.1109/TMAG.2006.878417
-
(2006)
IEEE Trans. Magn.
, vol.42
, pp. 2951
-
-
Maranville, B.B.1
McMichael, R.D.2
Dennis, C.L.3
Ross, C.A.4
Cheng, J.Y.5
-
8
-
-
4244124933
-
-
10.1103/PhysRevB.60.15194
-
J. Jorzick, S. O. Demokritov, C. Mathieu, B. Hillebrands, B. Bartenlian, C. Chappert, F. Rousseaux, and A. N. Slavin, Phys. Rev. B 60, 15194 (1999). 10.1103/PhysRevB.60.15194
-
(1999)
Phys. Rev. B
, vol.60
, pp. 15194
-
-
Jorzick, J.1
Demokritov, S.O.2
Mathieu, C.3
Hillebrands, B.4
Bartenlian, B.5
Chappert, C.6
Rousseaux, F.7
Slavin, A.N.8
-
10
-
-
33646875329
-
-
10.1063/1.2197087
-
S. Kalarickal, P. Krivosik, M. Wu, and C. E. Patton, J. Appl. Phys. 99, 093909 (2006). 10.1063/1.2197087
-
(2006)
J. Appl. Phys.
, vol.99
, pp. 093909
-
-
Kalarickal, S.1
Krivosik, P.2
Wu, M.3
Patton, C.E.4
-
11
-
-
48449089945
-
-
10.1103/PhysRevB.78.024431
-
J. Topp, J. Podbielski, D. Heitmann, and D. Grundler, Phys. Rev. B 78, 024431 (2008). 10.1103/PhysRevB.78.024431
-
(2008)
Phys. Rev. B
, vol.78
, pp. 024431
-
-
Topp, J.1
Podbielski, J.2
Heitmann, D.3
Grundler, D.4
-
12
-
-
16844370158
-
-
10.1016/j.spmi.2004.12.006
-
J. Podbielski, F. Giesen, M. Berginski, N. Hoyer, and D. Grundler, Superlattices Microstruct. 37, 341 (2005). 10.1016/j.spmi.2004.12.006
-
(2005)
Superlattices Microstruct.
, vol.37
, pp. 341
-
-
Podbielski, J.1
Giesen, F.2
Berginski, M.3
Hoyer, N.4
Grundler, D.5
-
14
-
-
33847679353
-
-
10.1063/1.2709909
-
G. Gubbiotti, S. Tacchi, G. Carlotti, N. Singh, S. Goolaup, A. O. Adeyeye, and M. Kostylev, Appl. Phys. Lett. 90, 092503 (2007). 10.1063/1.2709909
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 092503
-
-
Gubbiotti, G.1
Tacchi, S.2
Carlotti, G.3
Singh, N.4
Goolaup, S.5
Adeyeye, A.O.6
Kostylev, M.7
-
16
-
-
34648815888
-
-
10.1063/1.2786593
-
Y. Nozaki, K. Tateishi, S. Taharazako, M. Ohta, S. Yoshimura, and K. Matsuyama, Appl. Phys. Lett. 91, 122505 (2007). 10.1063/1.2786593
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 122505
-
-
Nozaki, Y.1
Tateishi, K.2
Taharazako, S.3
Ohta, M.4
Yoshimura, S.5
Matsuyama, K.6
-
17
-
-
20744454785
-
-
10.1103/PhysRevB.66.132402
-
K. Y. Guslienko, S. O. Demokritov, B. Hillebrands, and A. N. Slavin, Phys. Rev. B 66, 132402 (2002). 10.1103/PhysRevB.66.132402
-
(2002)
Phys. Rev. B
, vol.66
, pp. 132402
-
-
Guslienko, K.Y.1
Demokritov, S.O.2
Hillebrands, B.3
Slavin, A.N.4
-
18
-
-
72949091588
-
-
The irradiation time of 1.3 s was chosen to accommodate for the analog electronics that controlled the rf switches. As demonstrated by other experiments such a long irradiation time does not increase the sample temperature significantly (see Ref.).
-
The irradiation time of 1.3 s was chosen to accommodate for the analog electronics that controlled the rf switches. As demonstrated by other experiments such a long irradiation time does not increase the sample temperature significantly (see Ref.).
-
-
-
-
19
-
-
72949099803
-
-
This calculation is done in logarithmic scale. For such small values logarithmic and linear scale are almost identical.
-
This calculation is done in logarithmic scale. For such small values logarithmic and linear scale are almost identical.
-
-
-
-
20
-
-
72949111579
-
-
NISTIR 6376
-
M. Donahue and D. G. Porter, National Institute of Standards and Technology Interagency Report NISTIR 6376, 1999, http://math.nist.gov/oommf/
-
(1999)
-
-
Donahue, M.1
Porter, D.G.2
-
22
-
-
72949114591
-
-
The material parameters are μ0 Ms =1.08 T (saturation magnetization), A=13× 10-12 J/m (exchange constant), and γ=176 GHz/T (gyromagnetic ratio).
-
The material parameters are μ0 Ms =1.08 T (saturation magnetization), A=13× 10-12 J/m (exchange constant), and γ=176 GHz/T (gyromagnetic ratio).
-
-
-
-
24
-
-
29644446367
-
-
10.1103/PhysRevB.72.224413
-
G. Gubbiotti, S. Tacchi, G. Carlotti, P. Vavassori, N. Singh, S. Goolaup, A. O. Adeyeye, A. Stashkevich, and M. Kostylev, Phys. Rev. B 72, 224413 (2005). 10.1103/PhysRevB.72.224413
-
(2005)
Phys. Rev. B
, vol.72
, pp. 224413
-
-
Gubbiotti, G.1
Tacchi, S.2
Carlotti, G.3
Vavassori, P.4
Singh, N.5
Goolaup, S.6
Adeyeye, A.O.7
Stashkevich, A.8
Kostylev, M.9
-
26
-
-
36149026274
-
-
10.1103/PhysRev.73.155
-
C. Kittel, Phys. Rev. 73, 155 (1948). 10.1103/PhysRev.73.155
-
(1948)
Phys. Rev.
, vol.73
, pp. 155
-
-
Kittel, C.1
|