메뉴 건너뛰기




Volumn , Issue , 1999, Pages 961-967

Robust, efficient, globally-optimized reinforcement learning with the parti-game algorithm

Author keywords

[No Author keywords available]

Indexed keywords

REINFORCEMENT LEARNING;

EID: 72949120761     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (5)
  • 1
    • 84899012670 scopus 로고    scopus 로고
    • Modifying the parti-game algorithm for increased robustness, higher efficiency and better policies
    • Northeastern University, Boston, MA
    • Al-Ansari, M. A. and R. J. Williams (1998). Modifying the parti-game algorithm for increased robustness, higher efficiency and better policies. Technical Report NU-CCS-98-13, College of Computer Science, Northeastern University, Boston, MA.
    • (1998) Technical Report NU-CCS-98-13, College of Computer Science
    • Al-Ansari, M.A.1    Williams, R.J.2
  • 3
    • 0006488247 scopus 로고
    • The parti-game algorithm for variable resolution reinforcement learning in multidimensional state spaces
    • Morgan Kaufman
    • Moore, A. W. (1994b). The parti-game algorithm for variable resolution reinforcement learning in multidimensional state spaces. In Proceedings of Neural Information Processing Systems Conference 6. Morgan Kaufman.
    • (1994) Proceedings of Neural Information Processing Systems Conference , vol.6
    • Moore, A.W.1
  • 4
    • 0029514510 scopus 로고
    • The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces
    • Moore, A. W. and C. G. Atkeson (1995). The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces. Machine Learning 21.
    • (1995) Machine Learning 21
    • Moore, A.W.1    Atkeson, C.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.