메뉴 건너뛰기




Volumn 49, Issue 1, 2009, Pages 167-181

Geometric means of positive operators

Author keywords

Arithmetic geometric mean inequality; Geometric mean; Positive operator; Reverse inequality

Indexed keywords


EID: 72949092768     PISSN: 12256951     EISSN: None     Source Type: Journal    
DOI: 10.5666/KMJ.2009.49.1.167     Document Type: Article
Times cited : (14)

References (19)
  • 4
    • 23044518492 scopus 로고    scopus 로고
    • Geometrical significance of the Löwner-Heinz inequality
    • E. Andruchow, G. Corach and D. Stojanoff, Geometrical significance of the Löwner- Heinz inequality, Proc. Amer. Math. Soc., 128(1999), 1031-1037.
    • (1999) Proc. Amer. Math. Soc. , vol.128 , pp. 1031-1037
    • Andruchow, E.1    Corach, G.2    Stojanoff, D.3
  • 5
    • 84972570848 scopus 로고
    • Convexity of the geodestic distance on spaces of positive operators
    • G. Corach, H. Porta and L. Recht, Convexity of the geodestic distance on spaces of positive operators, Illinois J. Math., 38(1994), 87-94.
    • (1994) Illinois J. Math. , vol.38 , pp. 87-94
    • Corach, G.1    Porta, H.2    Recht, L.3
  • 6
    • 27844559646 scopus 로고    scopus 로고
    • Geometric means and Hadamard products
    • B. Q. Feng and A. Tonge, Geometric means and Hadamard products, Math. Inequal- ities Appl., 8(2005), 559-564.
    • (2005) Math. Inequal- ities Appl. , vol.8 , pp. 559-564
    • Feng, B.Q.1    Tonge, A.2
  • 7
    • 34748832992 scopus 로고    scopus 로고
    • A reverse inequality for the weighted geometric mean due to Lawson-Lim
    • J. I. Fujii, M. Fujii, M. Nakamura, J. Pečarić and Y. Seo, A reverse inequality for the weighted geometric mean due to Lawson-Lim, Linear Algebra Appl., 427(2007), 272-284.
    • (2007) Linear Algebra Appl. , vol.427 , pp. 272-284
    • Fujii, J.I.1    Fujii, M.2    Nakamura, M.3    Pečarić, J.4    Seo, Y.5
  • 8
    • 77950380961 scopus 로고    scopus 로고
    • An operator version of the Wilf-Diaz-Metcalf inequality
    • J. I. Fujii and T. Furuta, An operator version of the Wilf-Diaz-Metcalf inequality, Nihonkai Math. J., 9(1998), 47-52.
    • (1998) Nihonkai Math. J. , vol.9 , pp. 47-52
    • Fujii, J.I.1    Furuta, T.2
  • 9
    • 33751272700 scopus 로고    scopus 로고
    • Bounds for the ratio and difference between parallel sum and series via Mond-Pečarić method
    • J. I. Fujii, M. Nakamura, J. Pečarić and Y. Seo, Bounds for the ratio and difference between parallel sum and series via Mond-Pečarić method, Math. Inequalities and Appl., 9(2006), 749-759.
    • (2006) Math. Inequalities and Appl. , vol.9 , pp. 749-759
    • Fujii, J.I.1    Nakamura, M.2    Pečarić, J.3    Seo, Y.4
  • 10
    • 0001492185 scopus 로고    scopus 로고
    • Operator inequalities related to Cauchy-schwarz and Hölder-McCarthy inequalities
    • M. Fujii, S. Izumino, R. Nakamoto and Y. Seo, Operator inequalities related to Cauchy-schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J., 8(1997), 117- 122.
    • (1997) Nihonkai Math. J. , vol.8 , pp. 117-122
    • Fujii, M.1    Izumino, S.2    Nakamoto, R.3    Seo, Y.4
  • 11
    • 3643101799 scopus 로고    scopus 로고
    • A geometrical structure in the Furuta inequality II
    • M. Fujii, J. F. Jiang and E. Kamei, A geometrical structure in the Furuta inequality II, Nihonkai Math. J., 8(1997), 37-46.
    • (1997) Nihonkai Math. J. , vol.8 , pp. 37-46
    • Fujii, M.1    Jiang, J.F.2    Kamei, E.3
  • 12
    • 21444459455 scopus 로고    scopus 로고
    • Mean theoretic approach to the grand Furuta inequality
    • M. Fujii and E. Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124(1996), 2751-2756.
    • (1996) Proc. Amer. Math. Soc. , vol.124 , pp. 2751-2756
    • Fujii, M.1    Kamei, E.2
  • 15
    • 0000472839 scopus 로고
    • Means of positive linear operators
    • F. Kubo, and T. Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
    • (1980) Math. Ann. , vol.246 , pp. 205-224
    • Kubo, F.1    Ando, T.2
  • 17
    • 77950455765 scopus 로고    scopus 로고
    • Geometric operator mean induced from the Riccati equation
    • N. Nakamura, Geometric operator mean induced from the Riccati equation, Sci. Math. Japon., 66(2007), 83-87.
    • (2007) Sci. Math. Japon. , vol.66 , pp. 83-87
    • Nakamura, N.1
  • 18
    • 0001338184 scopus 로고
    • Hilbert's projective metric and iterated nonlinear maps
    • R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc., 75(391)(1988).
    • (1988) Mem. Amer. Math. Soc. , vol.75 , Issue.391
    • Nussbaum, R.D.1
  • 19
    • 33646933575 scopus 로고    scopus 로고
    • An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias
    • T. Yamazaki, An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias, Linear Algebra Appl., 416(2006), 688-695.
    • (2006) Linear Algebra Appl. , vol.416 , pp. 688-695
    • Yamazaki, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.