-
1
-
-
0342650072
-
Symmetric function means of positive operators
-
W. N. Anderson, Jr., T. D. Morley and G.E. Trapp, Symmetric function means of positive operators, Linear Algebra Appl., 60(1984), 129-143.
-
(1984)
Linear Algebra Appl.
, vol.60
, pp. 129-143
-
-
Anderson W.N., Jr.1
Morley, T.D.2
Trapp, G.E.3
-
3
-
-
2542467065
-
Geometric means
-
T. Ando, C.-K. Li and R. Mathias, Geometric means, Linear Algebra Appl., 385(2004), 305-334.
-
(2004)
Linear Algebra Appl.
, vol.385
, pp. 305-334
-
-
Ando, T.1
Li, C.-K.2
Mathias, R.3
-
4
-
-
23044518492
-
Geometrical significance of the Löwner-Heinz inequality
-
E. Andruchow, G. Corach and D. Stojanoff, Geometrical significance of the Löwner- Heinz inequality, Proc. Amer. Math. Soc., 128(1999), 1031-1037.
-
(1999)
Proc. Amer. Math. Soc.
, vol.128
, pp. 1031-1037
-
-
Andruchow, E.1
Corach, G.2
Stojanoff, D.3
-
5
-
-
84972570848
-
Convexity of the geodestic distance on spaces of positive operators
-
G. Corach, H. Porta and L. Recht, Convexity of the geodestic distance on spaces of positive operators, Illinois J. Math., 38(1994), 87-94.
-
(1994)
Illinois J. Math.
, vol.38
, pp. 87-94
-
-
Corach, G.1
Porta, H.2
Recht, L.3
-
6
-
-
27844559646
-
Geometric means and Hadamard products
-
B. Q. Feng and A. Tonge, Geometric means and Hadamard products, Math. Inequal- ities Appl., 8(2005), 559-564.
-
(2005)
Math. Inequal- ities Appl.
, vol.8
, pp. 559-564
-
-
Feng, B.Q.1
Tonge, A.2
-
7
-
-
34748832992
-
A reverse inequality for the weighted geometric mean due to Lawson-Lim
-
J. I. Fujii, M. Fujii, M. Nakamura, J. Pečarić and Y. Seo, A reverse inequality for the weighted geometric mean due to Lawson-Lim, Linear Algebra Appl., 427(2007), 272-284.
-
(2007)
Linear Algebra Appl.
, vol.427
, pp. 272-284
-
-
Fujii, J.I.1
Fujii, M.2
Nakamura, M.3
Pečarić, J.4
Seo, Y.5
-
8
-
-
77950380961
-
An operator version of the Wilf-Diaz-Metcalf inequality
-
J. I. Fujii and T. Furuta, An operator version of the Wilf-Diaz-Metcalf inequality, Nihonkai Math. J., 9(1998), 47-52.
-
(1998)
Nihonkai Math. J.
, vol.9
, pp. 47-52
-
-
Fujii, J.I.1
Furuta, T.2
-
9
-
-
33751272700
-
Bounds for the ratio and difference between parallel sum and series via Mond-Pečarić method
-
J. I. Fujii, M. Nakamura, J. Pečarić and Y. Seo, Bounds for the ratio and difference between parallel sum and series via Mond-Pečarić method, Math. Inequalities and Appl., 9(2006), 749-759.
-
(2006)
Math. Inequalities and Appl.
, vol.9
, pp. 749-759
-
-
Fujii, J.I.1
Nakamura, M.2
Pečarić, J.3
Seo, Y.4
-
10
-
-
0001492185
-
Operator inequalities related to Cauchy-schwarz and Hölder-McCarthy inequalities
-
M. Fujii, S. Izumino, R. Nakamoto and Y. Seo, Operator inequalities related to Cauchy-schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J., 8(1997), 117- 122.
-
(1997)
Nihonkai Math. J.
, vol.8
, pp. 117-122
-
-
Fujii, M.1
Izumino, S.2
Nakamoto, R.3
Seo, Y.4
-
11
-
-
3643101799
-
A geometrical structure in the Furuta inequality II
-
M. Fujii, J. F. Jiang and E. Kamei, A geometrical structure in the Furuta inequality II, Nihonkai Math. J., 8(1997), 37-46.
-
(1997)
Nihonkai Math. J.
, vol.8
, pp. 37-46
-
-
Fujii, M.1
Jiang, J.F.2
Kamei, E.3
-
12
-
-
21444459455
-
Mean theoretic approach to the grand Furuta inequality
-
M. Fujii and E. Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124(1996), 2751-2756.
-
(1996)
Proc. Amer. Math. Soc.
, vol.124
, pp. 2751-2756
-
-
Fujii, M.1
Kamei, E.2
-
13
-
-
27844596683
-
-
Element, Zagreb
-
T. Furuta, J. Mićić, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities I, Element, Zagreb, 2005.
-
(2005)
Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities I
-
-
Furuta, T.1
Mićić, J.2
Pečarić, J.3
Seo, Y.4
-
15
-
-
0000472839
-
Means of positive linear operators
-
F. Kubo, and T. Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
-
(1980)
Math. Ann.
, vol.246
, pp. 205-224
-
-
Kubo, F.1
Ando, T.2
-
17
-
-
77950455765
-
Geometric operator mean induced from the Riccati equation
-
N. Nakamura, Geometric operator mean induced from the Riccati equation, Sci. Math. Japon., 66(2007), 83-87.
-
(2007)
Sci. Math. Japon.
, vol.66
, pp. 83-87
-
-
Nakamura, N.1
-
18
-
-
0001338184
-
Hilbert's projective metric and iterated nonlinear maps
-
R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc., 75(391)(1988).
-
(1988)
Mem. Amer. Math. Soc.
, vol.75
, Issue.391
-
-
Nussbaum, R.D.1
-
19
-
-
33646933575
-
An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias
-
T. Yamazaki, An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias, Linear Algebra Appl., 416(2006), 688-695.
-
(2006)
Linear Algebra Appl.
, vol.416
, pp. 688-695
-
-
Yamazaki, T.1
|