메뉴 건너뛰기




Volumn 22, Issue 1, 2010, Pages 16-30

Density conscious subspace clustering for high-dimensional data

Author keywords

And association rules; Classification; Clustering; Data clustering; Data mining; Subspace clustering.

Indexed keywords

A-DENSITY; CARDINALITIES; CLUSTERING; CLUSTERING ACCURACY; CLUSTERING DATA; CRITICAL PROBLEMS; DATA SETS; DENSE REGION; DENSITY THRESHOLD; DENSITY-BASED APPROACHES; DIVERGENCE PROBLEMS; DIVIDE AND CONQUER; FEATURE SPACE; HIGH DIMENSIONAL DATA; HIGH QUALITY; HIGH-DENSITY REGIONS; INNOVATIVE ALGORITHMS; NOVEL CLUSTERING; SUBSPACE CLUSTERING;

EID: 72949091449     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2008.224     Document Type: Article
Times cited : (43)

References (28)
  • 7
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum and P. Langley, "Selection of Relevant Features and Examples in Machine Learning," Artificial Intelligence, vol.97, pp. 245-271, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 8
    • 0030387631 scopus 로고    scopus 로고
    • Data mining: An overview from database perspective
    • Dec.
    • M.-S. Chen, J. Han, and P.S. Yu, "Data Mining: An Overview from Database Perspective," IEEE Trans. Knowledge and Data Eng., vol.8, no.6, pp. 866-883, Dec. 1996.
    • (1996) IEEE Trans. Knowledge and Data Eng. , vol.8 , Issue.6 , pp. 866-883
    • Chen, M.-S.1    Han, J.2    Yu, P.S.3
  • 21
  • 24
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu, "Subspace Clustering for High Dimensional Data: A Review," ACM SIGKDD Explorations Newsletter, vol.6, pp. 90-105, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 27
    • 0742324835 scopus 로고    scopus 로고
    • FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting
    • K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee, "FINDIT: A Fast and Intelligent Subspace Clustering Algorithm Using Dimension Voting," Information and Software Technology, vol.46, pp. 255-271, 2004.
    • (2004) Information and Software Technology , vol.46 , pp. 255-271
    • Woo, K.-G.1    Lee, J.-H.2    Kim, M.-H.3    Lee, Y.-J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.