-
2
-
-
51149205918
-
-
0034-6861. 10.1103/RevModPhys.48.587
-
J. A. Barker and D. Henderson, Rev. Mod. Phys. 0034-6861 48, 587 (1976). 10.1103/RevModPhys.48.587
-
(1976)
Rev. Mod. Phys.
, vol.48
, pp. 587
-
-
Barker, J.A.1
Henderson, D.2
-
3
-
-
0000097660
-
-
0033-068X. 10.1143/PTP.23.829
-
T. Morita, Prog. Theor. Phys. 0033-068X 23, 829 (1960). 10.1143/PTP.23.829
-
(1960)
Prog. Theor. Phys.
, vol.23
, pp. 829
-
-
Morita, T.1
-
4
-
-
25144492677
-
On the equivalence between the energy and virial routes to the equation of state of hard-sphere fluids
-
DOI 10.1063/1.1992469, 104102
-
A. Santos, J. Chem. Phys. 0021-9606 123, 104102 (2005). 10.1063/1.1992469 (Pubitemid 41338872)
-
(2005)
Journal of Chemical Physics
, vol.123
, Issue.10
, pp. 1-8
-
-
Santos, A.1
-
5
-
-
34047183996
-
Are the energy and virial routes to thermodynamics equivalent for hard spheres?
-
DOI 10.1080/00268970600968011, PII 769947268, Seventh Liblice Conference on the Statistical Mechanics of Liquids
-
A. Santos, Mol. Phys. 0026-8976 104, 3411 (2006). 10.1080/ 00268970600968011 (Pubitemid 47226613)
-
(2006)
Molecular Physics
, vol.104
, Issue.22-24
, pp. 3411-3418
-
-
Santos, A.1
-
6
-
-
34047136200
-
Thermodynamic consistency between the energy and virial routes in the mean spherical approximation for soft potentials
-
DOI 10.1063/1.2712181
-
A. Santos, J. Chem. Phys. 0021-9606 126, 116101 (2007). 10.1063/1.2712181 (Pubitemid 46516378)
-
(2007)
Journal of Chemical Physics
, vol.126
, Issue.11
, pp. 116101
-
-
Santos, A.1
-
7
-
-
34548065186
-
Low-temperature and high-temperature approximations for penetrable-sphere fluids: Comparison with Monte Carlo simulations and integral equation theories
-
DOI 10.1103/PhysRevE.76.021504
-
Al. Malijevsk, S. B. Yuste, and A. Santos, Phys. Rev. E 1063-651X 76, 021504 (2007). 10.1103/PhysRevE.76.021504 (Pubitemid 47294688)
-
(2007)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.76
, Issue.2
, pp. 021504
-
-
Malijevsky, A.1
Yuste, S.B.2
Santos, A.3
-
8
-
-
44149108199
-
Penetrable square-well fluids: Exact results in one dimension
-
DOI 10.1103/PhysRevE.77.051206
-
A. Santos, R. Fantoni, and A. Giacometti, Phys. Rev. E 1063-651X 77, 051206 (2008). 10.1103/PhysRevE.77.051206 (Pubitemid 351718042)
-
(2008)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.77
, Issue.5
, pp. 051206
-
-
Santos, A.1
Fantoni, R.2
Giacometti, A.3
-
9
-
-
70349617808
-
-
0021-9606. 10.1063/1.3236515
-
R. Fantoni, A. Giacometti, Al. Malijevsk, and A. Santos, J. Chem. Phys. 0021-9606 131, 124106 (2009). 10.1063/1.3236515
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 124106
-
-
Fantoni, R.1
Giacometti, A.2
Malijevsk, Al.3
Santos, A.4
-
10
-
-
72949115883
-
-
note
-
This can be quickly established by starting from the definition of the Helmholtz free energy F=U-TS (S being the entropy), so that P=- (F/V) Β,N, Z=ρ [ (ΒF/N) /ρ] Β, and U= [ (ΒF) /Β] N,V. Equation then follows immediately.
-
-
-
-
11
-
-
72949089433
-
-
note
-
In the nonlinear Debye-Hückel theory, the potential of mean force follows the relation -Β [ψ (r) -φ (r)] =w (r), where w̃ (k) is still given by Eq.. Note that within the LDH approximation, h (r) =f (r) +w (r) +w (r) f (r). Upon dropping the last nonlinear term, using the Ornstein-Zernike relation in k -space, h̃ (k) = c̃ (k) / [1-ρ c̃ (k)], and transforming back to real space, one finds c (r) =f (r). This can be further reduced to the MSA approximation (extended to all r) c (r) =-Βφ (r) for bounded potentials and high temperatures (see below).
-
-
-
-
12
-
-
72949087699
-
-
note
-
Note that the LDH theory was originally devised for Coulomb potential where it is justified for distances larger than the Debye length (and sufficiently high temperatures). For bounded potentials (and again sufficiently high temperatures), the region of reliability is extended to all distances.
-
-
-
-
13
-
-
32644481588
-
Thermodynamically self-consistent liquid state theories for systems with bounded potentials
-
DOI 10.1063/1.2167646
-
B. M. Mladek, G. Kahl, and M. Neumann, J. Chem. Phys. 0021-9606 124, 064503 (2006) 10.1063/1.2167646; (Pubitemid 43248029)
-
(2006)
Journal of Chemical Physics
, vol.124
, Issue.6
, pp. 064503
-
-
Mladek, B.M.1
Kahl, G.2
Neumann, M.3
-
14
-
-
33646337455
-
-
See also B. M. Mladek, M. J. Fernaud, G. Kahl, and M. Neumann, Condens Matter Phys. 8, 135 (2005).
-
(2005)
Condens Matter Phys.
, vol.8
, pp. 135
-
-
Mladek, B.M.1
Fernaud, M.J.2
Kahl, G.3
Neumann, M.4
-
15
-
-
58149266416
-
-
0370-1573. 10.1016/S0370-1573(00)00141-1
-
C. N. Likos, Phys. Rep. 0370-1573 348, 267 (2001). 10.1016/S0370-1573(00) 00141-1
-
(2001)
Phys. Rep.
, vol.348
, pp. 267
-
-
Likos, C.N.1
-
16
-
-
72949102389
-
-
note
-
106 MC steps (one particle move per step). The pressure was determined from the virial equation through analysis of the pair correlation function at the singularities of the potential.
-
-
-
-
18
-
-
0001739612
-
-
The HNC closure can also be derived from a variational principle (see Ref.). The functional evaluated at its extremum is proportional to the excess Helmholtz free energy of the fluid and this ensures thermodynamic consistency between the virial and energy routes. In this context, see 0021-9606 10.1063/1.433545
-
The HNC closure can also be derived from a variational principle (see Ref.). The functional evaluated at its extremum is proportional to the excess Helmholtz free energy of the fluid and this ensures thermodynamic consistency between the virial and energy routes. In this context, see W. Olivares and D. A. McQuarrie, J. Chem. Phys. 0021-9606 65, 3604 (1976) 10.1063/1.433545;
-
(1976)
J. Chem. Phys.
, vol.65
, pp. 3604
-
-
Olivares, W.1
McQuarrie, D.A.2
-
19
-
-
0041376961
-
-
0021-9606 10.1063/1.1590642
-
R. Fantoni and G. Pastore, J. Chem. Phys. 0021-9606 119, 3810 (2003). 10.1063/1.1590642
-
(2003)
J. Chem. Phys.
, vol.119
, pp. 3810
-
-
Fantoni, R.1
Pastore, G.2
-
21
-
-
72949122763
-
-
note
-
In this respect, note that the Percus-Yevick theory, which retains all linear chains but only a subset of netted chains in the diagrammatic expansion of y (r), yields in general inconsistent energy and virial equations of state.
-
-
-
|